Comparative Review of Mechanical Properties of Rice Straw and RiceHusk Fiber Reinforced Polymer Composite

Article Preview

Abstract:

Rice straw and rice husk fibers (RS/RH) reinforced polymer-based composites have theability to conserve wood and petroleum resources. As natural filler, rice straw and rice husk offer asustainable material for the production of polymer-based composites. The application ofbiocomposite limits the burning of straw at the root and may further enhance the socioeconomicstatus of farmers and rural populations. This review mainly focuses on five different weightpercentage of reinforced RS and RH fiber content (5%, 10%, 15%, 20% and 25%) in polymercomposites. Nowadays, Epoxy, polyurethane, polyester, PVA, PLA and polyethylene are beingused as matrix material in polymer composites. This paper holds good with understanding themechanical properties, pretreatment methods and offer important insight into potential uses ofpolymer composites with biodegradable reinforce fiber.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-164

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Gupta, R. Kumar, K.K. Baruah, S. Hazarik, S. Karmakar and N. Bordoloi, "Greenhouse gas emission from rice fields: a review from Indian context," Environmental Science and Pollution Research, vol. 8, Apr. 2021, p.30551–30572.

DOI: 10.1007/s11356-021-13935-1

Google Scholar

[2] B. Marques, A. Tadeu, J. António, J. Almeida and J. Brito J, "Mechanical, thermal and acoustic behavior of polymer-based composite materials produced with rice husk and expanded cork," Construction and Building Materials Vol. 239, April 2020, 117851.

DOI: 10.1016/j.conbuildmat.2019.117851

Google Scholar

[3] A. Dan, F. Torsten, S. Michael, R. Andrew, S. Erik and S. Mikael, "Recycling of wood fiber-reinforced HDPE by multiple reprocessing," J. Appl. Polym. Sci. Vol. 133, May 2016, 43877.

Google Scholar

[4] V.A. Yiga, P. Sinja, L. Michael, E. Stefan, O.P. Wilberforce and B. Christian, "Development of fiber-reinforced polypropylene with NaOH pretreated rice and coffee husks as fillers: Mechanical and thermal properties," Journal of Thermoplastic Composite Materials, vol. 33, Feb. 2019, pp.1269-1291.

DOI: 10.1177/0892705718823255

Google Scholar

[5] F. Yao, Q. Wu, Y. Lei and Y. Xu, "Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading," Ind Crops Prod. Vol. 28(1), July 2008, p.63–72.

DOI: 10.1016/j.indcrop.2008.01.007

Google Scholar

[6] K. Kaur and U.G. Phutela, "Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment. Renew," Energy, vol. 92, 2016, p.178–184.

DOI: 10.1016/j.renene.2016.01.083

Google Scholar

[7] S.C. Shi and G.T. Liu, "Cellulose nanocrystal extraction from rice straw using a chlorine-free bleaching process. Cellulose vol.28, 2021, p.6147–6158.

DOI: 10.1007/s10570-021-03889-5

Google Scholar

[8] V.B. Agbor, N. Cicek, R. Parling, A. Berlin and D.B. Levin, "Biomass pretreatment: Fundamentals toward application," Biotechnol, vol.29, 2011, pp.675-685.

DOI: 10.1016/j.biotechadv.2011.05.005

Google Scholar

[9] W.L. Sun, W.F. Ye and W.Y. Tao, "Improving Enzymatic Hydrolysis of Cellulose from Rice Straw Using an Ionic Liquid," Ac Pretreatment, vol. 35(21), Sep. 2013, pp.2042-2050.

DOI: 10.1080/15567036.2010.532192

Google Scholar

[10] J.D. Harindintwali, J. Zhou and X. Yu, "Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria. A novel tool for environmental sustainability," Sci. Total Environ, Vol. (715) May 2020, 136912.

DOI: 10.1016/j.scitotenv.2020.136912

Google Scholar

[11] S. Chandra and J. Bhattacharya, "Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils," J. Clean. Prod., vol. 215, 2019, pp.1123-1139.

DOI: 10.1016/j.jclepro.2019.01.079

Google Scholar

[12] C.C. Lo, Y.W. Chang, Y.L. Chen, Y.L. Liu, H.S. Wu and Y.M. Sun, "Lignin recovery from rice straw biorefinery solid waste by soda process with ethylene glycol as co-solvent," J. Taiwan Inst. Chem. Eng., vol. 126, 2021, pp.50-57.

DOI: 10.1016/j.jtice.2021.07.030

Google Scholar

[13] A. Bernard and Goodman, "Utilization of waste straw and husks from rice production: A Review," J. Bioresour Bioprod., vol.5, 2020, pp.143-162.

Google Scholar

[14] N. Wei, E.J. Oh , G. Million, J.H. Cate and Y.S. Jin, "Simultaneous utilization of cello- biose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform," ACS Synth Biol., vol.4, 2015, p.707–13.

DOI: 10.1021/sb500364q

Google Scholar

[15] F.R. Amin, H. Khalid, H. Zhang, S.U. Rahman, R. Zhang, G. Liu and C. Chen, "Pretreatment methods of lignocellulosic biomass for anaerobic digestion," AMB Express, vol. 7(72), March 2017.

DOI: 10.1186/s13568-017-0375-4

Google Scholar

[16] A. Mukherjee, S. Banerjee and G. Halder, "Parametric optimization of delignification of rice straw through central composite design approach towards application in grafting," J. Adv. Res., vol.14, 2018, pp.11-23.

DOI: 10.1016/j.jare.2018.05.004

Google Scholar

[17] A. Rodriguez, R. Sanchez, A. Requejo and Ferrer, "A Feasibility of rice straw as a raw material for the production of soda cellulose pulp," J. Clean. Prod., vol. 18, 2010, pp.1084-1091.

DOI: 10.1016/j.jclepro.2010.03.011

Google Scholar

[18] A.K. Kumar and S. Sharma, "Recent updates on different methods of pretreatment of lignocellulosic feed stocks: a review," Bioresour Bioprocess, 2017, doi.

DOI: 10.1186/s40643-017-0137-9

Google Scholar

[19] M. Shibata, K. Ozawa, N. Teramoto, R. Yosomiya and H. Takeishi, "Biocomposites made from short fiber and biodegradable polyesters," Macromol. Mater. Eng., vol. 88, 2003, pp.35-43.

DOI: 10.1002/mame.200290031

Google Scholar

[20] X. Meng and A.S. Ragauskas, "recent advancement in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates," Current Opinion in Biotechnology, vol. 27, 2014, pp.150-158.

DOI: 10.1016/j.copbio.2014.01.014

Google Scholar

[21] G. Singh and S.K. Arya, "A review on management of rice straw by use of cleaner technologies abundant opportunities and expectations for Indian farming. J. Clean. Prod., 2020.

DOI: 10.1016/j.jclepro.2020.125278

Google Scholar

[22] A. Abraham, A.K. Mathew, R. Sindhu, A. Pandey and P. Binod, "Potential of rice straw for bio-refiningpp. an overview. Bioresource Technology, vol. 215, 2016, pp.29-36.

DOI: 10.1016/j.biortech.2016.04.011

Google Scholar

[23] P.S. Zhu, W. Huang, W. Huang, K. Wang, Q. Chen and Y. Wu, "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, vol. 154, 2015, pp.190-196.

DOI: 10.1016/j.apenergy.2015.05.008

Google Scholar

[24] J.W. Kim, K.S. Kim, J.S. Lee, S.M. Park, H.Y. Cho, J.C. Park and J.S. Kim, "Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresour. Technol. Vol. 102, 2011a, pp.8992-8999.

DOI: 10.1016/j.biortech.2011.06.068

Google Scholar

[25] N.D. Vu, T.T. Hang, N.D. Bui, C.D. Vu and H.V. Nguyen, L "lignin and cellulose extraction from vietnam's rice straw using ultrasound-assisted alkaline treatment method,' Int. J. Polym. Sci., 2017, doi.

DOI: 10.1155/2017/1063695

Google Scholar

[26] M. Badiei, N. Asim, J.M. Jahim and K. Sopian, "Comparison of chemical pretreatment methods for cellulosic biomass," Procedia Soc Behav Sci., vol. 9, 2014, pp.170-174.

DOI: 10.1016/j.apcbee.2014.01.030

Google Scholar

[27] A. Valles, M. Capilla, F.J. Alvarez- Hornos, M. García-Puchol, P. San-Valero and C. Gabaldón, "Optimization of alkali pretreatment to enhance rice straw conversion to butanol," Biomass and Bioenergy, vol. 150, 2021, p.10613.

DOI: 10.1016/j.biombioe.2021.106131

Google Scholar

[28] T. Zhao, Y. Tashiro, J. Zheng, K. Sakai and K. Sonomoto, "Semi-hydrolysis with low enzyme loading leads to highly effective butanol fermentation. Bioresour. Technol., vol. 264, 2018, pp.335-342.

DOI: 10.1016/j.biortech.2018.05.056

Google Scholar

[29] N.D. Yaacab, H. Ismail and S.S. Ting, "Potential use of paddy straw as filler in poly lactic acid/paddy straw powder biocomposite: thermal and thermal properties," Procedia Chemistry, vol.19, 2016, pp.757-762.

DOI: 10.1016/j.proche.2016.03.081

Google Scholar

[30] Y.N Guragain and P.V. Vadlani, "Renewable biomass utilization: a way forward to establish sustainable chemical and processing industries," Clean Technol., vol.3, 2002, pp.243-259.

DOI: 10.3390/cleantechnol3010014

Google Scholar

[31] R.P. Swatloski, S.K. Spear, J.D. Holbrey and R.D. Rogers, "Dissolution of cellulose with ionic liquids," J. Am. Chem., vol. 124, 2002, pp.4974-4975.

DOI: 10.1021/ja025790m

Google Scholar

[32] G. Su, H.C. Ong, M.Y. Cheah and W.H. Chen, S.S. Lam, Y. Huang, " Microwave-assisted pyrolysis technology for bioenergy recovery: Mechanism, performance and prospect." Fuel, 2022, doi;.

DOI: 10.1016/j.fuel.2022.124983

Google Scholar

[33] H. Li, J. Xu, S.M. Nyambur, J. Wang, C. Li, X. Zhu, X. Feng and Y. Wang, "Food waste pyrolysis by traditional heating and microwave heating: A review," Fuel. doi.

DOI: 10.1016/j.fuel.2022.124574

Google Scholar

[34] X. Ren, M.S. Ghazani, H. Zhu, W. Ao, H. Zhang, E. Moresid, J. Zhu, P. Yanga, N. Zhonga and X. Bi, "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, 2022, doi: 10.1016/ j.apenergy. 2022. 118970.

DOI: 10.1016/j.apenergy.2022.118970

Google Scholar

[35] S.P. Zhang, Q. Dong, L. Zhang and Y.Q. Xiong, "high quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts," Bioresour Technol., vol. 191, 2015, pp.17-23.

DOI: 10.1016/j.biortech.2015.04.114

Google Scholar

[36] Y. Fong, H.P.T. Chiueh and S.L. Lo, "A review on microwave pyrolysis of lignocellulosic biomass," Sustain. Environ. Res., vol. 26, 2016, pp.103-109.

Google Scholar

[37] Y.F. Huang, W.H. Kuan, S.L. Lo and C.F. Lin CF, "Total recovery of resources and energy from rice straw using microwave-induced pyrolysis," Bioresour Technol., vol. 99, 2008, pp.8252-8258.

DOI: 10.1016/j.biortech.2008.03.026

Google Scholar

[38] M. Sriariyanun, Q. Yan, I. Nowik, K. Cheenkachorn, T. Phusantisampan. And M. Modigell, "Efficient pretreatment of rice straw by combination of screw- press and ionic liquid to enhance enzymatic hydrolysis," Kasetsart J. (Nat. Sci.), vol. 49, 2015, pp.146-154.

Google Scholar

[39] Y. Huang, J. Tan, X. Xuan, L. Liu, M. Xie, H. Liu, S. Yu, G. Zheng, "Study on untreated and alkali treated rice straw reinforced geopolymer composites" 262 (2021) 124304.

DOI: 10.1016/j.matchemphys.2021.124304

Google Scholar

[40] A. Saidah, S. E. Susilowati, Y. Nofendri, Effect of fiber loading and alkali treatment on rice straw fiber reinforced composite for automotive bumper beam application," Vol.9(6), 2019, pp.1865-1870.

DOI: 10.18517/ijaseit.9.6.7006

Google Scholar

[41] J.J. Cheng and G.R. Timilsina, "Status and barriers of advanced biofuel technologies: a review," Renew Energy, vol. 36, 2011, pp.3541-3549.

DOI: 10.1016/j.renene.2011.04.031

Google Scholar

[42] M. Emtenan, H.H.E. Khadrawy, W.M. Ahmed and M.M. Zaabal, "some observations on rice straw with emphasis on updates of its management," World Appl. Sci. J., vol. 16, 2012, pp.354-361.

Google Scholar

[43] Z. Song, lin, Yag, G. he, Feng, Y. zhong, Ren, G. xin, Han, X. hui, 2013. "Pretreatment of rice straw by hydrogen peroxide for enhanced methane yield". J. Integr. Agric, V-2, PP-1258–1266.

DOI: 10.1016/s2095-3119(13)60355-x

Google Scholar

[44] V.B. Agbor, N. Cicek, R. parling, A. Berlin, D.B. Levin, "Biomass pretreatment: Fundamentals toward application", Biotechnol, V- 29, 2011, PP-675-685.

DOI: 10.1016/j.biotechadv.2011.05.005

Google Scholar

[45] N.D. Vu, H.T. Tran, N.D. Bui, C.D. Vu, and H.V. Nguyen, "Lignin and cellulose extraction from vietnam's rice straw using ultrasound-assisted alkaline treatment method", International Journal of Polymer Science, Volume-2017, PP-1-8. doi.org/

DOI: 10.1155/2017/1063695

Google Scholar

[46] L. Yao, C.G. Yoo, X. Meng, M. Li, Y.  Pu, A.J. Ragauskas and H. Yang, "A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment," Biotechnol. Biofuels h., 2018.

DOI: 10.1186/s13068-018-1087-y

Google Scholar

[47] N.H. Do, H.H. Pham, T.M. Le, J. Lauwaert, L. Diels, A. Verberckmoes, N.H.N. Do, V.T. Tran and P.K. Le, "The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw". Scientific reports, (2020) 10:21263.

DOI: 10.1038/s41598-020-77867-5

Google Scholar

[48] R. Samuel, Y. Pu, B. Raman, A.J. Ragauskas, "Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment," Appl Biochem Biotechnol. vol. 162, 2010, pp.62-74

DOI: 10.1007/s12010-009-8749-y

Google Scholar

[49] J. Liu, C. Jia and H.E. Chunxia, "Flexural properties of rice straw and starch composites. AASRI Procedia 3, 2012, pp.89-94.

DOI: 10.1016/j.aasri.2012.11.016

Google Scholar

[50] D. Kardaya and D. Sudrajat, "Mode of action of ammoniating in increasing nitrogen content and in vitro apparent organic matter digestibility of forages. Int. J. Sci. Res., vol. 8, 2019, pp.1234-1238.

Google Scholar

[51] J. Singh, M. Suhag and A. Dhaka, "Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methodspp. a review," Carbohydr. Polym. vol. 117, 2015a, pp.624-631.

DOI: 10.1016/j.carbpol.2014.10.012

Google Scholar

[52] R. E. Drumright, P. R. Gruber, D. E. Henton, "Polylactic Acid Technology," Adv. Material, vol. 12, No. 23, 2000, pp.1841-1846.

DOI: 10.1002/1521-4095(200012)12:23<1841::aid-adma1841>3.0.co;2-e

Google Scholar

[53] L. Qina, J. Qiu, M. Liu, S. Ding, L. Shao, S. Lu, G. Zhang, Y. Zhao and X. Fu, "Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate)," J. Chem. Eng., vol. 66, 2011, pp.772-778.

DOI: 10.1016/j.cej.2010.11.039

Google Scholar

[54] Y. Huang, J. Tan, X. Xuan, L. Liu, M. Xie, H. Liu, S. Yu and G. Zheng, "Study on untreated and alkali treated rice straw reinforced geopolymer composites. Mater. Chem. Phys., 2021.

DOI: 10.1016/j.matchemphys.2021.124304

Google Scholar

[55] S. Singh and M. Patel, "Effective utilization of rice straw in value-added by-products: A systematic review of state of art and future perspective," Biomass and Bioenergy, 2022, doi.

DOI: 10.1016/j.biombioe.2022.106411

Google Scholar

[56] M. Jia, M. Sun , X. Li, Xu, Y. Wang, L. Shi and H. Hu, "a new era of straw-based pulping? Evidence from a carbon metabolism perspective panel," J. Clean. Prod., vol. 193, 2018, pp.327-337.

DOI: 10.1016/j.jclepro.2018.04.227

Google Scholar

[57] K. Sudhakar and Srinivas Ch., "Investigation of Mechanical Properties of Rice Straw Fibre Polypropylene Composites," Int. Journal of Engineering Research and Applications, vol. 4, 2014, pp.182-187.

Google Scholar

[58] A.G. Babu and S.S. Saravanakumar, "Mechanical and physicochemical properties of green biofilms from poly (Vinyl Alcohol)/nano rice hull fillers," Polym. Bull., vol. 79, June 2021, p.5365–5387.

DOI: 10.1007/s00289-021-03757-z

Google Scholar

[59] K. Hardinnawird and S.R. Aisha SR, "Effect of rice husks as filler in polymer matrix composites," JMES, vol. 2, 2012, pp.181-186.

Google Scholar

[60] N. Bisht, P.C. Gope, and N. Rani, "Rice husk as a fibre in composites: A review," Journal of the Mechanical Behavior of Materials, vol. 29, 2020, p.147–162.

DOI: 10.1515/jmbm-2020-0015

Google Scholar

[61] C. Ranjan, Z. Ahmed, S.R. Kumar, A. Kumar, K. Kumar, "Fabrication and strength analysis of rice straw fibers reinforced epoxy biodegradable composite, "Materials Mater. Today: Proc., vol. 46, 2021, pp.331-335.

DOI: 10.1016/j.matpr.2020.08.299

Google Scholar

[62] N. Bisht and P. C. Gope, "Mechanical properties of rice husk flour reinforced epoxy bio-composite," Int. J Eng Res Appl., vol. 5(6), 2015, p.123–8.

DOI: 10.1016/j.matpr.2018.10.228

Google Scholar

[63] Jayamani E, Hamdan S, Rahman R and Bakri KBM, "Study of Sound Absorption Coefficients and Characterization of Rice Straw Stem Fibers Reinforced Polypropylene Composites," Bioresources, vol. 10, 2015, pp.3378-92.

DOI: 10.15376/biores.10.2.3378-3392

Google Scholar

[64] M.R. Ismail, A.M. Ali, Yassen, and M.S. Afify, "Mechanical Properties of Rice Straw Fiber-Reinforced Polymer Composites," Fibers and Polymers, vol. 12, 2011, pp.648-656.

DOI: 10.1007/s12221-011-0648-5

Google Scholar

[65] X. Xie, Z. Zhou, M. Jiang, X. Xu , Z. Wang and D. Hui, "Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties," Compositesb 78, 2015, pp.153-161.

DOI: 10.1016/j.compositesb.2015.03.086

Google Scholar

[66] S.B. Perumal, P.S. Sellamuthua, R.B. Nambiara and E.R. Sadiku, " Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw," Applied Surface Scienc, .2018.

DOI: 10.1016/j.apsusc.2018.01.022

Google Scholar

[67] A.V.R. Prasad, K.M.M Rao and M.A. Kumar, "Flexural properties of rice straw reinforced polyester composites," Indian Journal of fiber &Textile Research, vol. 31, 2005, pp.335-338.

Google Scholar

[68] A.S. Madival, D. Doreswamy, S.A. Handady, K.R. Hebbar and S.K. Lakshminarayana, "Investigation of the Mechanical and Liquid Absorption Properties of a Rice Straw-Based Composite for Ayurvedic Treatment Tables," Materials, vol. 15, 606, 2022.

DOI: 10.3390/ma15020606

Google Scholar

[69] H.D. Rozman, Y.S. Yeo, G.S. Tay and A. Abubakar, "the mechanical and physical properties of polyurethane composites based on rice husk and polyethylene glycol," Polymer Testing, vol. 22, 2003, pp.617-623.

DOI: 10.1016/s0142-9418(02)00165-4

Google Scholar

[70] N. Petchwattana and S. Covavisaruch, "Effects of Rice Hull Particle Size and Content on the Mechanical Properties and Visual Appearance of Wood Plastic Composites Prepared from Poly(vinyl chloride)," Journal of Bionic Engineering, vol. 10, 2013, p.110–117

DOI: 10.1016/s1672-6529(13)60205-x

Google Scholar

[71] L. Zhu, J. Qiu, W. Liu and E. Sakai, "Mechanical and thermal properties of rice straw/PLA modified by nano attapulgite/PLA interfacial layer," Compos. Commun. , vol. 13, 2019, pp.18-21.

DOI: 10.1016/j.coco.2019.02.001

Google Scholar

[72] Y. Kurokochi and M. Sato, "Properties of binderless board made from rice straw: The morphological effect of particles," Ind Crops Prod., vol. 69, 2015, pp.55-59.

DOI: 10.1016/j.indcrop.2015.01.044

Google Scholar

[73] N. Harrison and N.K. James, "Investigating the effects of Fiber concentration and fiber size on mechanical properties of Rice Husk Fiber Reinforced polyester composites," International Journal of Composite Materials, vol. 8(5), 2018, pp.105-15.

Google Scholar

[74] S.Z. Lin, Y.G. He, F.Y. Zhong, R.G. Xin and HX. Hui, "Pretreatment of rice straw by hydrogen peroxide for enhanced methane yield," J. Integr. Agric, vol. 2, 2013, p.1258–1266.

Google Scholar

[75] P.J. Pan and Y. Inoue, "Polymorphism and isomorphism in biodegradable polyesters," Prog. Polym. Sci., vol. 34, 2009, p.605–640.

DOI: 10.1016/j.progpolymsci.2009.01.003

Google Scholar

[76] S. Liu, X.G. Lo, N. Liew, Z. Liu and Y. Lia, "Effect of urea addition on giant reed ensilage and subsequent methane production by anaerobic digestion," Bioresour. Technol., vol. 192, 2015, pp.682-688.

DOI: 10.1016/j.biortech.2015.06.034

Google Scholar

[77] M. Mallampati, B.M. Raju and M.T. Krishna, "Evaluation of Mechanical Properties of Rice Straw Fibre Polypropylene Composites," SSRG – IJME, 2018, p.2348 – 8360.

Google Scholar

[78] G.B.P. Hattotuwa, H. Ismail and Baharin, "Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites," Polymer Testing, vol. 21, 2002, pp.833-839.

DOI: 10.1016/s0142-9418(02)00018-1

Google Scholar