Monitoring of Graphene Properties in the Process of Viral Biosensor Manufacturing

Article Preview

Abstract:

The properties of graphene chips with low reproducibility (LR) after photolithography (PLG) and graphene functionalization have been studied. It is shown that the introduction of additional cleaning after PLG can significantly increase the reproducibility of the parameters of processed graphene in biosensors. The use of dilute PBS solutions for virus detection makes it possible to increase the relative concentration sensitivity of biosensors by several times.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Y. Bai, T. Xu, X. Zhang, Graphene-Based Biosensors for Detection of Biomarkers. Micromachines. 11 (2020) 60-72.

Google Scholar

[2] Y. Xiao, Y.X Pang, Y. Yan. P. Qian, H. Zhao, S. Manickam, T.Wu, C.H. Pang, Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives, Adv. Sci. 10 (2023) 2205292.

DOI: 10.1002/advs.202205292

Google Scholar

[3] S. Wang, X. Qi, D. Hao, Review—Recent Advances in Graphene-Based Field-Effect-Transistor Biosensors: A Review on Biosensor Designing Strategy. J. Electrochem. Soc. 169 (2022) 027509.

DOI: 10.1149/1945-7111/ac4f24

Google Scholar

[4] R.M. Torrente-Rodriguez, H. Lukas, J. Tu, et al. A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19. Nat. Biotechnol. 38 (2020) 217.

Google Scholar

[5] A.A. Lebedev, S.Y. Davydov, I.A. Eliseyev, et al. Graphene on SiC Substrate as Biosensor: Theoretical Background, Preparation, and Characterization. Materials 14 (2021) 590.

DOI: 10.3390/ma14030590

Google Scholar

[6] N.M. Shmidt, A.S. Usikov, E.I. Shabunina, et al. Investigation of the morphology and electrical properties of graphene used in the development of biosensors for detection of influenza viruses. Biosensors 12 (2022) 8-26.

DOI: 10.3390/bios12010008

Google Scholar

[7] Z. Tehrani, G. Burwell, M. A. Mohd Azmi, Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker. 2D Materials 1 (2014) 025004.

DOI: 10.1088/2053-1583/1/2/025004

Google Scholar

[8] I.A. Eliseev, E.A. Gushchina, S.A. Klotchenko, et al. Modification in adsorption properties of graphene during the development of viral biosensors. Semiconductors 56 (2022) 908.

Google Scholar

[9] A. Choi, A. T. Hoang, T. T. Ngoc Van, B. Shong, et al. Residue-free photolithographic patterning of graphene. Chem. Eng. J. 429 (2022), 132504.

DOI: 10.1016/j.cej.2021.132504

Google Scholar

[10] S.-W. Lee, M. Muoth, T. Helbling, M. Mattmann, C. Hierold Suppression of resist contamination during photolithography on carbon nanomaterials by a sacrificial layer. Carbon 66 (2014) 295.

DOI: 10.1016/j.carbon.2013.09.003

Google Scholar

[11] S. Eissa, J.G. Contreras, F. Mahvash, et al. Functionalized CVD Monolayer Graphene for Label-Free Impedimetric Biosensing. Nano Res. 8 (2015) 1698–1709.

DOI: 10.1007/s12274-014-0671-0

Google Scholar

[12] V. Georgakilas, M. Otyepka, A. B. Bourlinos, et al. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 112 11 (2012) 6156−6214.

DOI: 10.1021/cr3000412

Google Scholar

[13] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8 (2013) 235–246.

DOI: 10.1038/nnano.2013.46

Google Scholar

[14] F. Fromm, M. H. Oliviera Jr., A. Molina-Sanchez, et al. Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC(0001). New J. Phys. 15 (2013) 043031.

DOI: 10.1088/1367-2630/15/4/043031

Google Scholar

[15] A.A. Balandin, Low-frequency 1/f noise in graphene devices. Nature Nanotechnology 8 (2013) 549-555.

DOI: 10.1038/nnano.2013.144

Google Scholar

[16] I.A. Eliseyev, A.S. Usikov, S.P. Lebedev, et al. Raman scattering and low-frequency noise in epitaxial graphene chips. J. Phys.: Conf. Ser. 1697 (2020) 012130.

DOI: 10.1088/1742-6596/1697/1/012130

Google Scholar

[17] I. Novodchuk, M. Bajcsy, M. Yavuz, Graphene-Based Field-Effect-Transistor Biosensors for breast canser detection: A review on biosensing strategy. Carbon 172 (2021) 432-453.

DOI: 10.1016/j.carbon.2020.10.048

Google Scholar