Thermochromic Properties of 3C-, 6H- and 4H-SiC Polytypes up to 500°C

Article Preview

Abstract:

The thermochromic properties (color change with temperature) of n type doped SiC wafers of different polytypes (3C, 4H and 6H) have been investigated up to 500°C under air. It was found that 3C-SiC color passes from bright yellow at room temperature to deep orangeat 500°C leading to a color contrast (ΔE) as high as 64. The hexagonal polytypes undergo also a color change upon heating but far less pronounced, with ΔE values <20. All these semiconductors undergo band gap shrinkage upon heating which effect largely participated to the observed color change. This effect is very sensitive for 3C polytypesince its bandgap is already in the visible energy range at room temperature. The thermochromicity of 3C-SiC was found to be reversible thanks to its thermal stability and its resistance towards oxidation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-21

Citation:

Online since:

August 2024

Export:

Share:

Citation:

* - Corresponding Author

[1] J.H. Day, Thermochromism of inorganic compounds, Chemical Reviews 68 (6) (1968) 649-657 /

DOI: 10.1021/cr60256a001

Google Scholar

[2] Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao, Y. Long, Thermochromic VO2 for Energy-Efficient Smart Windows; Joule 2, (2018) 1707–1746 /

DOI: 10.1016/j.joule.2018.06.018

Google Scholar

[3] H. Ramlow, K.L. Andrade, A.P.S. Immich, Smart textiles: an overview of recent progress on chromic textiles, J. Textile Institute 112(1) (2021) 152-171 /

DOI: 10.1080/00405000.2020.1785071

Google Scholar

[4] R. Kulcar, M. Friskovec, N. Hauptman, A. Vesel, M. K. Gunde, Colorimetric properties of reversible thermochromic printing inks, Dyes & Pigments 86 (2010) 271-277 /

DOI: 10.1016/j.dyepig.2010.01.014

Google Scholar

[5] X. Li, L. Xu, X. Li, M. Hu, R. Huang, C. Huang, Oxidant peroxo-synthesized monoclinic BiVO4: Insights into the crystal structure deformation and the thermochromic properties, J. Alloys & Compounds, 787 (2019,) 666-671 /.

DOI: 10.1016/j.jallcom.2019.02.136

Google Scholar

[6] G. Ferro, D. Carole, F. Cauwet, L. Acher, H. Ji, R. Chiriac, F. Toche, A. Brioude, Thermochromic properties of some colored oxide materials, Optical Materials: X, 15 (2022) 100167 /.

DOI: 10.1016/j.omx.2022.100167

Google Scholar

[7] X. Li, L. Xu, X. Li, M. Hu, R. Huang, C. Huang, Oxidant peroxo-synthesized monoclinic BiVO4: Insights into the crystal structuredeformation and the thermochromic properties, J. Alloys & Compounds787 (2019) 666-671 /.

DOI: 10.1016/j.jallcom.2019.02.136

Google Scholar

[8] H.L. Tan, A. Suyanto, A.T. De Denko, W.H. Saputera, R. Amal, F.E. Osterloh, Y.H. Ng, Enhancing the Photoactivity of Faceted BiVO4 via Annealing in Oxygen-Deficient Condition, Part. Part. Syst. Charact. 34 (4)(2017) 1600290 /

DOI: 10.1002/ppsc.201600290

Google Scholar

[9] W.J. Choyke, Optical properties of polytypes of SiC: interband absorption, and luminescence of nitrogen-exciton complexes,Proceedings of the International Conference on Silicon Carbide (1968), Mat. Res. Bull. Vol. 4, (1969) S141-S152 /

DOI: 10.1016/B978-0-08-006768-1.50018-8

Google Scholar

[10] P.J. Wellmann, R. Weingärtner, Determination of doping levels and their distribution in SiC by optical techniques, Mater. Sci. and Eng. B102 (2003) 262-268 /

DOI: 10.1016/S0921-5107(02)00707-9

Google Scholar

[11] W. Mokrzycki, M. Tatol, Color difference Delta E - A survey, Mach. Graph. & Vis. 20 (4) (2011) 383–411.

Google Scholar

[12] D. Goto, Y. Hijikata, S. Yagi, and H. Yaguchi, Differences in SiC thermal oxidation process between crystalline surface orientations observed by in-situ spectroscopic ellipsometry,J. Appl. Phys. 117, (2015) 095306 /

DOI: 10.1063/1.4914050

Google Scholar