Design of Monolithically Integrated Temperature Sensors in 4H-SiC JFETs

Article Preview

Abstract:

In this paper we study and compare two designs of a temperature sensor monolithically integrated to a vertical SiC JFET. One sensor utilizes the standard JFET P+ aluminum gate implantation scheme. The advantage of this sensor is that the integration with a JFET process flow can be achieved with no additional process steps or mask layers. The other sensor uses a combination P-body and a low energy P+ implantation scheme, typically seen in MOSFETs. Both sensors exploit the variation of resistance with temperature of Al doped SiC. Drift-Diffusion simulations of both designs are carried out at fixed temperatures, exhibiting an excellent ~53% relative reduction in sensor resistance from 300 to 450K. However, neither design shows linear behavior with temperature, beginning to saturate at 450K. Electrothermal simulations are also deployed to verify the sensor robustness as the sensor is locate relatively far from the JFET junction. Due to the high thermal conductivity of SiC, the sensor average temperature follows closely the junction temperature. Current crowding (or 2D effects) close to the contact edges is observed in both sensors. We also deploy a simple analytical model to calculate the resistance as a function of the temperature for both sensors. The model agrees with the drift-diffusion calculations, however due to the 2D nature of current flow, a maximum 19.6% relative error is obtained. In general, both sensors deployed similar relative sensitivity, however the P-body sensor resistance changes in a range of 10.6kΩ to 4.95kΩ compared to 700Ω to 330Ω for the P+ sensor.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] L. C. Yu, G. T. Dunne, K. S. Matocha, K. P. Cheung, J. S. Suehle, and K. Sheng, 'Reliability Issues of SiC MOSFETs: A Technology for High-Temperature Environments', IEEE Transactions on Device and Materials Reliability, vol. 10, no. 4, p.418–426, Dec. 2010.

DOI: 10.1109/TDMR.2010.2077295

Google Scholar

[2] N. G. Wright, A. B. Horsfall, and K. Vassilevski, 'Prospects for SiC electronics and sensors', Materials Today, vol. 11, no. 1, p.16–21, Jan. 2008.

DOI: 10.1016/S1369-7021(07)70348-6

Google Scholar

[3] S. Rao, L. Di Benedetto, G. Pangallo, A. Rubino, S. Bellone, and F. G. Della Corte, '85–440 K Temperature Sensor Based on a 4H-SiC Schottky Diode', IEEE Sensors Journal, vol. 16, no. 17, p.6537–6542, Sep. 2016.

DOI: 10.1109/JSEN.2016.2591067

Google Scholar

[4] M. Berthou, P. Godignon, and J. Millán, 'Monolithically Integrated Temperature Sensor in Silicon Carbide Power MOSFETs', IEEE Transactions on Power Electronics, vol. 29, no. 9, p.4970–4977, Sep. 2014.

DOI: 10.1109/TPEL.2013.2289013

Google Scholar

[5] A. Koizumi, J. Suda, and T. Kimoto, 'Temperature and doping dependencies of electrical properties in Al-doped 4H-SiC epitaxial layers', Journal of Applied Physics, vol. 106, no. 1, p.013716, Jul. 2009.

DOI: 10.1063/1.3158565

Google Scholar

[6] S. M. Thomas, M. R. Jennings, Y. K. Sharma, C. A. Fisher, and P. Mawby, 'Impact of the Oxidation Temperature on the Interface Trap Density in 4H-SiC MOS Capacitors', Materials Science Forum, vol. 778–780, p.599–602, 2014.

DOI: 10.4028/www.scientific.net/MSF.778-780.599

Google Scholar

[7] H. Chen, K. Yu, J. Ding, C. Li, J. Wang, and Y. Wang, 'Comprehensive Investigation of Gate Oxide Instability in 4H-SiC MOSFETs and MOS Capacitors Under High Gate Bias Stress', IEEE Transactions on Electron Devices, p.1–8, 2023.

DOI: 10.1109/TED.2023.3294458

Google Scholar

[8] Synopsys Inc., 'Sentaurus Device User Guide: Version S-2021.06', Jun. 2021.

Google Scholar

[9] M. Rambach, A. J. Bauer, and H. Ryssel, 'Electrical and topographical characterization of aluminum implanted layers in 4H silicon carbide', physica status solidi (b), vol. 245, no. 7, p.1315–1326, 2008.

DOI: 10.1002/pssb.200743510

Google Scholar

[10] W. J. Schaffer, G. H. Negley, K. G. Irvine, and J. W. Palmour, 'Conductivity Anisotropy in Epitaxial 6H and 4H Sic', MRS Online Proceedings Library, vol. 339, no. 1, p.595–600, Dec. 1994.

DOI: 10.1557/PROC-339-595

Google Scholar

[11] S. Tian, 'Monte Carlo Simulation of Ion Implantation in Crystalline SiC With Arbitrary Polytypes', IEEE Transactions on Electron Devices, vol. 55, no. 8, p.1991–1996, Aug. 2008.

DOI: 10.1109/TED.2008.926664

Google Scholar

[12] F. Monaghan, A. Martinez, F. Craig, and M. Jennings, 'Impact of Dimensions and Doping on the Breakdown Voltage of a Trench 4H-SiC Vertical JFET', Key Engineering Materials, vol. 948, p.69–75, 2023.

DOI: 10.4028/p-e6c13m

Google Scholar

[13] P. P. Altermatt et al., 'Numerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and self-consistent material parameters', Journal of Applied Physics, vol. 92, no. 6, p.3187–3197, Aug. 2002.

DOI: 10.1063/1.1501743

Google Scholar

[14] A. Galeckas, J. Linnros, V. Grivickas, U. Lindefelt, and C. Hallin, 'Auger recombination in 4H-SiC: Unusual temperature behavior', Appl. Phys. Lett., vol. 71, no. 22, p.3269–3271, Dec. 1997.

DOI: 10.1063/1.120309

Google Scholar

[15] K. Han and B. J. Baliga, '1.2-kV 4H-SiC SenseFET With Monolithically Integrated Sensing Resistor', IEEE Electron Device Letters, vol. 41, no. 3, p.437–440, Mar. 2020.

DOI: 10.1109/LED.2020.2964773

Google Scholar