Experimental Observation of Raman Assisted and Kerr Optical Frequency Comb in a 4H-Silicon-Carbide on Insulator Microresonator

Article Preview

Abstract:

Kerr nonlinear microcavities have garnered significant interest owing to their rich dynamics of nonlinear optical phenomena and compatibility with on-chip photonic integration. Recently, silicon carbide has emerged as a compelling platform due to its unique optical properties. In this study, we demonstrate Raman-assisted and Kerr optical frequency generation in a 4H-silicon carbide-on-insulator microresonator. By pumping the transverse electric (TE00) mode within the device, we observe a stimulated Raman scattering (SRS) Stokes with the Raman shift at approximately 775 cm-1, achieved with an on-chip power of 350 mW. Furthermore, by red-tuning the TE00 pump wavelength, we have achieved the coexistence of Raman and Kerr frequency combs. Using another device on the same chip with light variation of the taper we can observe the Raman and Kerr frequency combs within a spectral bandwidth ranging from ∼ 1440 to 1960 nm. The inclusion of the Raman-assisted comb extends the comb’s coverage into longer wavelength regimes, making it highly desirable for spectroscopy applications.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] F. Tara and B. Esther: Comm. Phy. Vol. 2 (2019), p.153

Google Scholar

[2] Y. Geng, H. Zhou, X. Han, W. Cui, Q. Zhang, B. Liu, G. Deng, Q. Zhou and K. Qiu: Nat. Comm. Vol. 13 (2022), p.1070

Google Scholar

[3] J. Riemensberger, A. Lukashchuk, M. Kaprov, W. Weng, E. Lucas, J. Liu, and T. J. Kippenberg: Nature Vol. 581 (2020), pp.164-170

DOI: 10.1038/s41586-020-2239-3

Google Scholar

[4] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. llic, A. Bluestone, N. Volet, T. komljenovic, L. Chang, S. Lee, D. Y. Oh, M. G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp: Nature Vol. 557 (2018), pp.81-85

DOI: 10.1038/s41586-018-0065-7

Google Scholar

[5] M. G. Suh, Q. F. Yang, X. Yi, K. J. Vahala: Science Vol. 354 (2016), pp.600-603

Google Scholar

[6] P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth and T. J. Kippenberg: Nature Vol. 450 (2007), pp.1214-1217

DOI: 10.1038/nature06401

Google Scholar

[7] A. G. Griffith, R. K.W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta and M. Lipson: Nat. Comm. vol. 6 (2015), p.6299

DOI: 10.1038/ncomms7299

Google Scholar

[8] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta and M. Lipson: Nat. Photon. vol. 4 (2010), pp.37-40

DOI: 10.1038/nphoton.2009.259

Google Scholar

[9] H. Weng, A. A. Afridi, J. Li, M. McDermott, H. Tu, L. P. Barry, Q. Lu, W. Guo and J. F. Donegan: APL. Photonics vol. 7 (2022)

DOI: 10.1063/5.0103070

Google Scholar

[10] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang: Optics Lett. vol. 38 (2013), pp.2810-2813

Google Scholar

[11] J. Liu, H. Weng, A. A. Afridi, J. Li, J. Dai, X. Ma, H. Long, Y. Zhang, Q. Lu, J. F. Donegan, and W. Guo: Optics Exp. vol. 28 (2020), pp.19270-19280

Google Scholar

[12] H. Weng, J. Liu, A. A. Afridi, J. Li, J. Dai, X. Ma, Y. Zhang, Q. Lu, J. F. Donegan, and W. Guo: Photon. Research vol. 9 (2021), pp.1351-1357

Google Scholar

[13] H. Yang, Q. F. Yang, J. Ling, R. Luo, H. Liang, M. Li, K. Vahala, and Q. Li: Optica vol. 6 (2019), pp.1138-1144

Google Scholar

[14] L. Chang, W. H. Shu, Q. F. Yang, B. Shen, A. Boes, J. D. Peter, W. Jin, C. Xiang, S. Liu, G. Moille, S. P. Yu, X. Wang, K. Srinivasan, S. B. Papp, K. Vahala and J. E. Bowers: Nat. Comm. vol. 11 (2020), p.1331

DOI: 10.1038/s41467-020-15005-5

Google Scholar

[15] X. Shi, W. Fan, A. Yi, X. Ou, K. Rottwitt and H. Ou in: CLEO Europe (2021), pp.1-1

Google Scholar

[16] L. Cai, J. Li, R. Wang, and Q. Li: Photon. Research vol. 10 (2022), pp.870-876

Google Scholar

[17] X. Shi, Y. Lu, D. Chaussende, K. Rottwitt and H. Ou: Materials vol. 16 (2023), p.2343

Google Scholar

[18] C. Wang, Z. Fang, A. Yi, B. Yang, Z. Wang, L. Zhou, C. Shen, Y. Zhou, R. Bao. and Z. Li: Light Sci. Appl. vol. 10 (2021), p.139

Google Scholar

[19] Th. Udhem, R. Holzwarth, and T. W. Hänsch: Nature vol. 416 (2002), pp.233-237

Google Scholar

[20] M. A. Guidry, D. M. Lukin, K. Y. Yang, R. Trivedi and J. Vučković: Nature Photon. vol. 16 (2022), pp.52-58

Google Scholar

[21] S. Fujii, and T. Tanabe: Nanophoton. vol. 9 (2020), pp.1087-1104

Google Scholar

[22] A. A. Afridi, H. Weng, J. Li, J. Liu, M. McDermott, Q. Lu, W. Guo and J. F. Donegan: Optics Cont. vol. 1 (2022), pp.42-50

Google Scholar

[23] H. Harima: Microelectronic Eng. vol. 83 (2006), pp.126-129

Google Scholar

[24] G. Lin, and Y. K. Chembo: Optics Lett. vol. 41 (2016), pp.3718-3721

Google Scholar

[25] Z. Gong, M. Li, X. Liu, Y. Xu, J. Lu, A. Bruch J. B. Surya, C. Zou and X. H. Tang: Physical Rev. Lett. vol. 125 (2020), p.183901

Google Scholar

[26] H. Weng, J. Liu, A. A. Afridi, J. Li, J. Dai, X. Ma, Y. Zhang, Q. Lu, J. F. Donegan and W. Guo: Optics Lett. vol. 46 (2021), pp.540-543

Google Scholar

[27] H. Ou, X. Shi, Y. Lu, M. Kollmuss, J. Steiner, V. Tabouret, M. Syväjärvi, P. Wellmann and D. Chaussende: Materials vol. 16 (2023), p.1014

DOI: 10.3390/ma16031014

Google Scholar