Device Modeling of 4H-SiC PIN Photodiodes with Shallow Implanted Al Emitters for VUV Sensor Applications

Article Preview

Abstract:

A numerical model is presented for the simulation of ultraviolet ion-implanted 4H-SiC photodiodes with shallow p- emitter doping profiles. An existing model for SiC pin photodiodes, taken from literature, is modified with a dedicated SiO2-SiC interface layer to account for degradation of carrier mobility and lifetime at the interface. Furthermore, aluminum compensation in 4H-SiC is included and its impact on the spectral response and carrier recombination is analyzed. The simulated spectral response in the wavelength range from 200 to 400 nm is compared to experimental data. While the existing model, taken from literature, fails to predict the performance of VUV photodiodes with a shallow p- emitter, the newly designed model successfully achieves high accuracy, even with a basic modeling approach featuring an abrupt material parameter transition.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] L. Jia, W. Zheng, F. Huang, Vacuum-ultraviolet photodetectors, PhotoniX 1 (2020).

Google Scholar

[2] K. Wilhelm, E. Marsch, B.N. Dwivedi, U. Feldman, Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations, Space Sci Rev 133 (2007) 103–179.

DOI: 10.1007/s11214-007-9285-0

Google Scholar

[3] B. Eliasson, U. Kogelschatz, UV excimer radiation from dielectric-barrier discharges, Appl. Phys. B 46 (1988) 299–303.

DOI: 10.1007/bf00686452

Google Scholar

[4] T. Kimoto, J.A. Cooper, Fundamentals of silicon carbide technology: Growth, characterization, devices and applications, Wiley, Singapore, 2014.

DOI: 10.1002/9781118313534

Google Scholar

[5] A. Gottwald, U. Kroth, E. Kalinina, V. Zabrodskii, Optical properties of a Cr/4H-SiC photodetector in the spectral range from ultraviolet to extreme ultraviolet, Applied optics 57 (2018) 8431–8436.

DOI: 10.1364/ao.57.008431

Google Scholar

[6] J. Hu, X. Xin, J.H. Zhao, F. Yan, B. Guan, J. Seely, B. Kjornrattanawanich, Highly sensitive visible-blind extreme ultraviolet Ni/4H-SiC Schottky photodiodes with large detection area, Optics letters 31 (2006) 1591–1593.

DOI: 10.1364/ol.31.001591

Google Scholar

[7] N.G. Wright, A.B. Horsfall, SiC sensors: a review, J. Phys. D: Appl. Phys. 40 (2007) 6345–6354.

DOI: 10.1088/0022-3727/40/20/s17

Google Scholar

[8] M. Schraml, N. Papathanasiou, A. May, T. Weiss, T. Erlbacher, Towards Sic-Based VUV Pin-Photodiodes - Investigations on 4H-SiC Photodiodes with Shallow Implanted Al Emitters, KEM 947 (2023) 77–82.

DOI: 10.4028/p-959z1t

Google Scholar

[9] Synopsys Inc., Sentaurus™ Process: Version U-2022.12, 2022.

Google Scholar

[10] Synopsys Inc., Sentaurus™ Device: Version U-2022.12, 2022.

Google Scholar

[11] A. Burenkov, C.D. Matthus, T. Erlbacher, Optimization of 4H-SiC UV Photodiode Performance Using Numerical Process and Device Simulation, IEEE Sensors J. 16 (2016) 4246–4252.

DOI: 10.1109/jsen.2016.2539598

Google Scholar

[12] Synopsys Inc., Sentaurus™ Structure Editor: Version U-2022.12, 2022.

Google Scholar

[13] O.P.A. Lindquist, K. Järrendahl, S. Peters, J.T. Zettler, C. Cobet, N. Esser, D.E. Aspnes, A. Henry, N.V. Edwards, Ordinary and extraordinary dielectric functions of 4H– and 6H–SiC from 3.5 to 9.0 eV, Appl. Phys. Lett. 78 (2001) 2715–2717.

DOI: 10.1063/1.1369617

Google Scholar

[14] J. Weiße, M. Hauck, T. Sledziewski, M. Tschiesche, M. Krieger, A.J. Bauer, H. Mitlehner, L. Frey, T. Erlbacher, Analysis of Compensation Effects in Aluminum-Implanted 4H-SiC Devices, MSF 924 (2018) 184–187.

DOI: 10.4028/www.scientific.net/msf.924.184

Google Scholar

[15] Y.-x. Yuan, Recent advances in trust region algorithms, Math. Program. 151 (2015) 249–281.

Google Scholar

[16] Synopsys Inc., Sentaurus™ Workbench Optimization Framework: Version U-2022.12, (2022)

Google Scholar