[1]
Tabe, Y.; Urayama, K.; Matsuyama, A.; Yamamoto, J.; Yoneya, M. Physics of Liquid Crystals. In The Liquid Crystal Display Story: 50 Years of Liquid Crystal R and D that Lead the Way to the Future; 2014
DOI: 10.1007/978-4-431-54859-1_10
Google Scholar
[2]
Prakash, J.; Kumar, A.; Chauhan, S. Aligning Liquid Crystal Materials through Nanoparticles: A Review of Recent Progress. Liquids 2022, 2, doi:10.3390/liquids2020005, Prakash, J.; Kumar, A.; Chauhan, S. Aligning Liquid Crystal Materials through Nanoparticles: A Review of Recent Progress. Liquids 2022, 2, https://.
DOI: 10.3390/liquids2020005
Google Scholar
[3]
Ma, L.L.; Li, C.Y.; Pan, J.T.; Ji, Y.E.; Jiang, C.; Zheng, R.; Wang, Z.Y.; Wang, Y.; Li, B.X.; Lu, Y.Q. Self-Assembled Liquid Crystal Architectures for Soft Matter Photonics. Light Sci Appl 2022, 11
DOI: 10.1038/s41377-022-00930-5
Google Scholar
[4]
Hu, J.; Yu, M.; Wang, M.; Choy, K.L.; Yu, H. Design, Regulation, and Applications of Soft Actuators Based on Liquid-Crystalline Polymers and Their Composites. ACS Appl Mater Interfaces 2022, 14
DOI: 10.1021/acsami.1c25103
Google Scholar
[5]
Smaisim, G.F.; Mohammed, K.J.; Hadrawi, S.K.; Koten, H.; Kianfar, E. Properties and Application of Nanostructure in Liquid Crystals: Review. Bionanoscience 2023, 13
DOI: 10.1007/s12668-023-01082-5
Google Scholar
[6]
Blanco-Fernández, G.; Blanco-Fernandez, B.; Fernández-Ferreiro, A.; Otero-Espinar, F.J. Lipidic Lyotropic Liquid Crystals: Insights on Biomedical Applications. Adv Colloid Interface Sci 2023, 313
DOI: 10.1016/j.cis.2023.102867
Google Scholar
[7]
Kahn, F.J. The Molecular Physics of Liquid-Crystal Devices. Phys Today 1982, 35.
DOI: 10.1063/1.2915096
Google Scholar
[8]
Blinov, L.M. Structure and Properties of Liquid Crystals; (2011)
Google Scholar
[9]
Uchida, J.; Soberats, B.; Gupta, M.; Kato, T. Advanced Functional Liquid Crystals. Advanced Materials 2022, 34.
DOI: 10.1002/adma.202109063
Google Scholar
[10]
Greschek, M.; Melle, M.; Schoen, M. Isotropic-Nematic Phase Transitions in Confined Mesogenic Fluids. the Role of Substrate Anchoring. Soft Matter 2010, 6.
DOI: 10.1039/b924417d
Google Scholar
[11]
Humpert, A.; Brown, S.F.; Allen, M.P. Molecular Simulations of Entangled Defect Structures around Nanoparticles in Nematic Liquid Crystals. Liq Cryst 2018, 45.
DOI: 10.1080/02678292.2017.1295478
Google Scholar
[12]
Melle, M.; Theile, M.; Hall, C.K.; Schoen, M. Nanoconfinement-Induced Structures in Chiral Liquid Crystals. Int J Mol Sci 2013, 14.
DOI: 10.3390/ijms140917584
Google Scholar
[13]
Chandrasekhar, S.; Madhusudana, N. V.; Shubha, K. Molecular Statistical Theory of Nematic Liquid Crystals. II. Relation between Elasticity and Orientational Order. Acta Crystallographica Section A 1972, 28.
DOI: 10.1107/S0567739472000051
Google Scholar
[14]
Shen, W.; Zhang, H.; Miao, Z.; Ye, Z. Recent Progress in Functional Dye-Doped Liquid Crystal Devices. Adv Funct Mater 2023, 33.
DOI: 10.1002/adfm.202210664
Google Scholar
[15]
Zhang, R.; Zhang, Z.; Han, J.; Yang, L.; li, J.; Song, Z.; Wang, T.; Zhu, J. Advanced Liquid Crystal-Based Switchable Optical Devices for Light Protection Applications: Principles and Strategies. Light Sci Appl 2023, 12.
DOI: 10.1038/s41377-022-01032-y
Google Scholar
[16]
Gruler, H.; Meier, G. INVESTIGATIONS ON THE ELASTIC CONSTANTS OF THE NEMATIC HOMOLOGOUS SERIES OF 4,4 Prime -Di(n-ALKOXY)AZOXYBENZENE. Mol Cryst Liq Cryst 1973, 23.
DOI: 10.1080/15421407308083376
Google Scholar
[17]
Calucci, L.; Geppi, M.; Urban, S. Orientational Ordering Studies of Fluorinated Thermotropic Liquid Crystals by NMR Spectroscopy. Magnetic Resonance in Chemistry 2014, 52.
DOI: 10.1002/mrc.4106
Google Scholar
[18]
Chłedowska, K.; Chruściel, D.; Janik, J.A.; Janik, J.M.; Kresse, H.; Stettin, H.; Otnes, K.; Stanek, T.; Urban, S.; Wróbel, S. Dielectric Relaxation and Quasielastic Neutron Scattering Study of Molecular Reorientation in the Nematic and Solid Phases of 4, 4'-Di-n-Butyloxyazoxybenzene. Liq Cryst 1988, 3.
DOI: 10.1080/02678298808086615
Google Scholar
[19]
Hanson, E.G.; Shen, Y.R.; Wong, G.K.L. Optical-Field-Induced Refractive Indices and Orientational Relaxation Times in a Homologous Series of Isotropic Nematic Substances. Phys Rev A (Coll Park) 1976, 14.
DOI: 10.1103/PhysRevA.14.1281
Google Scholar
[20]
Rachwalska, M. Activation Energies for Metastable to Stable Phase Transition of 4,4'-Di-n-Heptyloxyazoxybenzene. In Proceedings of the Journal of Thermal Analysis and Calorimetry; 2004; Vol. 78.
DOI: 10.1023/b:jtan.0000042180.79973.81
Google Scholar
[21]
Urban, S.; Czub, J.; Gestblom, B. Comparison of Dielectric Properties of Three Alkyl and Alkoxy Azoxybenzenes (NAOBs and NOAOBs, n = 5,6,7) in the Isotropic and Liquid Crystalline Phases. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences 2004, 59.
DOI: 10.1515/zna-2004-1009
Google Scholar
[22]
Gale, J.D.; Rohl, A.L. The General Utility Lattice Program (GULP). Mol Simul 2003, 29.
DOI: 10.1080/0892702031000104887
Google Scholar
[23]
Maurya, M.; Somashekarappa, H.; Nandaprakash, M.B.; Kumaraswamy, S.R.; Hemalatha, K.; Somashekar, R. Molecular Dynamic Study of Abrasive Wear, Viscosity and Moduli of UDMA: A Component of Dental Composite. Journal of Polymer Science and Engineering 2023, 6.
DOI: 10.24294/jpse.v6i1.2360
Google Scholar
[24]
Srinivas, P.; Mahadev, J.; Hemalatha, K.; Nandaprakash, M.B.; Somashekar, R. Topological Analysis and Molecular Modelling of Liquid Crystalline P-Azoxyanisole and Azobenzene Compounds. Pramana - Journal of Physics 2023, 97.
DOI: 10.1007/s12043-023-02568-3
Google Scholar
[25]
Otowski, W.; Demol, W.; Van Dael, I. Complex Dielectric Permittivity of Di-Propyloxyazoxybenzene (3.0A0B) and Racemic Methylbutyl-Phenyl-Hexyloxybenzoate (CE6) on the Basis of the Nordio-Rigatti-Segre Theory. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 1993, 226.
DOI: 10.1080/10587259308028793
Google Scholar
[26]
Yadav, N.; Panarin, Y.P.; Vij, J.K.; Jiang, W.; Mehl, G.H. Two Mechanisms for the Formation of the Ferronematic Phase Studied by Dielectric Spectroscopy. J Mol Liq 2023, 378.
DOI: 10.1016/j.molliq.2023.121570
Google Scholar
[27]
Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in 't Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS - a Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput Phys Commun 2022, 271.
DOI: 10.1016/j.cpc.2021.108171
Google Scholar
[28]
Jorgensen, W.L.; Tirado-Rives, J. Potential Energy Functions for Atomic-Level Simulations of Water and Organic and Biomolecular Systems. Proc Natl Acad Sci U S A 2005, 102.
DOI: 10.1073/pnas.0408037102
Google Scholar
[29]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J Mol Graph 1996, 14.
DOI: 10.1016/0263-7855(96)00018-5
Google Scholar
[30]
Hoseini, S.S.; Separdar, L.; Izadneshan, H. Effect of Molecular Aspect Ratio on Structure, Dynamics and Phase Stability of Thermotropic Liquid Crystals Studied by Molecular Dynamics Simulation. Solid State Commun 2023, 366–367.
DOI: 10.1016/j.ssc.2023.115147
Google Scholar
[31]
Chen, G.; Wei, W.; Li, S.; Zhou, X.; Li, Z.; Peng, H.; Xie, X. Liquid Crystal-Assisted Manufacturing of Flexible Holographic Polymer Nanocomposites for High-Security Level Anticounterfeiting. Mater Chem Front 2022, 6.
DOI: 10.1039/d2qm00744d
Google Scholar
[32]
V V, M.; Hegde, V.N.; S, D.; R, S. Comparison of Structural and Mechanical Properties of Suvin and MCU-5 Cotton Fibres. Advances in Materials and Processing Technologies 2022, 8, 1777–1790.
DOI: 10.1080/2374068X.2021.1878697
Google Scholar
[33]
Wilkins, D.M.; Grisafi, A.; Yang, Y.; Lao, K.U.; DiStasio, R.A.; Ceriotti, M. Accurate Molecular Polarizabilities with Coupled Cluster Theory and Machine Learning. Proc Natl Acad Sci U S A 2019, 116.
DOI: 10.1073/pnas.1816132116
Google Scholar
[34]
Syurik, J.; Jacucci, G.; Onelli, O.D.; Hölscher, H.; Vignolini, S. Bio-Inspired Highly Scattering Networks via Polymer Phase Separation. Adv Funct Mater 2018, 28.
DOI: 10.1002/adfm.201706901
Google Scholar
[35]
Somashekar, R.; Revannasiddaiah, D.; Madhava, M.S.; Subramhanyam, H.S.; Krishnamurti, D. BIREFRINGENCE OF SOME NEMATIC COMPOUNDS. Mol Cryst Liq Cryst 1978, 45.
DOI: 10.1080/15421407808083972
Google Scholar
[36]
Kittel, C. Introduction to Solid State Physics, 8th Edition. Wiley & Sons, New York, NY 2004.
Google Scholar
[37]
Willis, F.; Leisure, R.; Kanashiro, T. Temperature Dependence of the Elastic Constants of through a First-Order Structural Phase Transition. Phys Rev B Condens Matter Mater Phys 1996, 54.
DOI: 10.1103/PhysRevB.54.9077
Google Scholar