Simulations of Physical Properties of Alkoxy-Azoxybenzene Liquid Crystalline Homologous Series and Comparison with Experimental Results

Article Preview

Abstract:

This study investigates the intricate inter- and intra-molecular interactions that govern the range and nature of mesophases observed in homologous series of liquid crystalline materials. Using computational modelling, we compared the results with reported experimental values for several members of the series. Our analysis focused on various parameters, including lattice energy, orientational order parameter, moduli, stress-strain behaviour, Helmholtz free energy, orientational distribution function, zero-point energy, and molecular polarizabilities. Our findings reveal a strong correlation between the computational results and experimental data, providing valuable insights into the mesophases of these compounds. This alignment underscores the significance of our approach in understanding the fundamental behaviors of liquid crystalline materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-58

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tabe, Y.; Urayama, K.; Matsuyama, A.; Yamamoto, J.; Yoneya, M. Physics of Liquid Crystals. In The Liquid Crystal Display Story: 50 Years of Liquid Crystal R and D that Lead the Way to the Future; 2014

DOI: 10.1007/978-4-431-54859-1_10

Google Scholar

[2] Prakash, J.; Kumar, A.; Chauhan, S. Aligning Liquid Crystal Materials through Nanoparticles: A Review of Recent Progress. Liquids 2022, 2, doi:10.3390/liquids2020005, Prakash, J.; Kumar, A.; Chauhan, S. Aligning Liquid Crystal Materials through Nanoparticles: A Review of Recent Progress. Liquids 2022, 2, https://.

DOI: 10.3390/liquids2020005

Google Scholar

[3] Ma, L.L.; Li, C.Y.; Pan, J.T.; Ji, Y.E.; Jiang, C.; Zheng, R.; Wang, Z.Y.; Wang, Y.; Li, B.X.; Lu, Y.Q. Self-Assembled Liquid Crystal Architectures for Soft Matter Photonics. Light Sci Appl 2022, 11

DOI: 10.1038/s41377-022-00930-5

Google Scholar

[4] Hu, J.; Yu, M.; Wang, M.; Choy, K.L.; Yu, H. Design, Regulation, and Applications of Soft Actuators Based on Liquid-Crystalline Polymers and Their Composites. ACS Appl Mater Interfaces 2022, 14

DOI: 10.1021/acsami.1c25103

Google Scholar

[5] Smaisim, G.F.; Mohammed, K.J.; Hadrawi, S.K.; Koten, H.; Kianfar, E. Properties and Application of Nanostructure in Liquid Crystals: Review. Bionanoscience 2023, 13

DOI: 10.1007/s12668-023-01082-5

Google Scholar

[6] Blanco-Fernández, G.; Blanco-Fernandez, B.; Fernández-Ferreiro, A.; Otero-Espinar, F.J. Lipidic Lyotropic Liquid Crystals: Insights on Biomedical Applications. Adv Colloid Interface Sci 2023, 313

DOI: 10.1016/j.cis.2023.102867

Google Scholar

[7] Kahn, F.J. The Molecular Physics of Liquid-Crystal Devices. Phys Today 1982, 35.

DOI: 10.1063/1.2915096

Google Scholar

[8] Blinov, L.M. Structure and Properties of Liquid Crystals; (2011)

Google Scholar

[9] Uchida, J.; Soberats, B.; Gupta, M.; Kato, T. Advanced Functional Liquid Crystals. Advanced Materials 2022, 34.

DOI: 10.1002/adma.202109063

Google Scholar

[10] Greschek, M.; Melle, M.; Schoen, M. Isotropic-Nematic Phase Transitions in Confined Mesogenic Fluids. the Role of Substrate Anchoring. Soft Matter 2010, 6.

DOI: 10.1039/b924417d

Google Scholar

[11] Humpert, A.; Brown, S.F.; Allen, M.P. Molecular Simulations of Entangled Defect Structures around Nanoparticles in Nematic Liquid Crystals. Liq Cryst 2018, 45.

DOI: 10.1080/02678292.2017.1295478

Google Scholar

[12] Melle, M.; Theile, M.; Hall, C.K.; Schoen, M. Nanoconfinement-Induced Structures in Chiral Liquid Crystals. Int J Mol Sci 2013, 14.

DOI: 10.3390/ijms140917584

Google Scholar

[13] Chandrasekhar, S.; Madhusudana, N. V.; Shubha, K. Molecular Statistical Theory of Nematic Liquid Crystals. II. Relation between Elasticity and Orientational Order. Acta Crystallographica Section A 1972, 28.

DOI: 10.1107/S0567739472000051

Google Scholar

[14] Shen, W.; Zhang, H.; Miao, Z.; Ye, Z. Recent Progress in Functional Dye-Doped Liquid Crystal Devices. Adv Funct Mater 2023, 33.

DOI: 10.1002/adfm.202210664

Google Scholar

[15] Zhang, R.; Zhang, Z.; Han, J.; Yang, L.; li, J.; Song, Z.; Wang, T.; Zhu, J. Advanced Liquid Crystal-Based Switchable Optical Devices for Light Protection Applications: Principles and Strategies. Light Sci Appl 2023, 12.

DOI: 10.1038/s41377-022-01032-y

Google Scholar

[16] Gruler, H.; Meier, G. INVESTIGATIONS ON THE ELASTIC CONSTANTS OF THE NEMATIC HOMOLOGOUS SERIES OF 4,4 Prime -Di(n-ALKOXY)AZOXYBENZENE. Mol Cryst Liq Cryst 1973, 23.

DOI: 10.1080/15421407308083376

Google Scholar

[17] Calucci, L.; Geppi, M.; Urban, S. Orientational Ordering Studies of Fluorinated Thermotropic Liquid Crystals by NMR Spectroscopy. Magnetic Resonance in Chemistry 2014, 52.

DOI: 10.1002/mrc.4106

Google Scholar

[18] Chłedowska, K.; Chruściel, D.; Janik, J.A.; Janik, J.M.; Kresse, H.; Stettin, H.; Otnes, K.; Stanek, T.; Urban, S.; Wróbel, S. Dielectric Relaxation and Quasielastic Neutron Scattering Study of Molecular Reorientation in the Nematic and Solid Phases of 4, 4'-Di-n-Butyloxyazoxybenzene. Liq Cryst 1988, 3.

DOI: 10.1080/02678298808086615

Google Scholar

[19] Hanson, E.G.; Shen, Y.R.; Wong, G.K.L. Optical-Field-Induced Refractive Indices and Orientational Relaxation Times in a Homologous Series of Isotropic Nematic Substances. Phys Rev A  (Coll Park) 1976, 14.

DOI: 10.1103/PhysRevA.14.1281

Google Scholar

[20] Rachwalska, M. Activation Energies for Metastable to Stable Phase Transition of 4,4'-Di-n-Heptyloxyazoxybenzene. In Proceedings of the Journal of Thermal Analysis and Calorimetry; 2004; Vol. 78.

DOI: 10.1023/b:jtan.0000042180.79973.81

Google Scholar

[21] Urban, S.; Czub, J.; Gestblom, B. Comparison of Dielectric Properties of Three Alkyl and Alkoxy Azoxybenzenes (NAOBs and NOAOBs, n = 5,6,7) in the Isotropic and Liquid Crystalline Phases. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences 2004, 59.

DOI: 10.1515/zna-2004-1009

Google Scholar

[22] Gale, J.D.; Rohl, A.L. The General Utility Lattice Program (GULP). Mol Simul 2003, 29.

DOI: 10.1080/0892702031000104887

Google Scholar

[23] Maurya, M.; Somashekarappa, H.; Nandaprakash, M.B.; Kumaraswamy, S.R.; Hemalatha, K.; Somashekar, R. Molecular Dynamic Study of Abrasive Wear, Viscosity and Moduli of UDMA: A Component of Dental Composite. Journal of Polymer Science and Engineering 2023, 6.

DOI: 10.24294/jpse.v6i1.2360

Google Scholar

[24] Srinivas, P.; Mahadev, J.; Hemalatha, K.; Nandaprakash, M.B.; Somashekar, R. Topological Analysis and Molecular Modelling of Liquid Crystalline P-Azoxyanisole and Azobenzene Compounds. Pramana - Journal of Physics 2023, 97.

DOI: 10.1007/s12043-023-02568-3

Google Scholar

[25] Otowski, W.; Demol, W.; Van Dael, I. Complex Dielectric Permittivity of Di-Propyloxyazoxybenzene (3.0A0B) and Racemic Methylbutyl-Phenyl-Hexyloxybenzoate (CE6) on the Basis of the Nordio-Rigatti-Segre Theory. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 1993, 226.

DOI: 10.1080/10587259308028793

Google Scholar

[26] Yadav, N.; Panarin, Y.P.; Vij, J.K.; Jiang, W.; Mehl, G.H. Two Mechanisms for the Formation of the Ferronematic Phase Studied by Dielectric Spectroscopy. J Mol Liq 2023, 378.

DOI: 10.1016/j.molliq.2023.121570

Google Scholar

[27] Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in 't Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS - a Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput Phys Commun 2022, 271.

DOI: 10.1016/j.cpc.2021.108171

Google Scholar

[28] Jorgensen, W.L.; Tirado-Rives, J. Potential Energy Functions for Atomic-Level Simulations of Water and Organic and Biomolecular Systems. Proc Natl Acad Sci U S A 2005, 102.

DOI: 10.1073/pnas.0408037102

Google Scholar

[29] Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J Mol Graph 1996, 14.

DOI: 10.1016/0263-7855(96)00018-5

Google Scholar

[30] Hoseini, S.S.; Separdar, L.; Izadneshan, H. Effect of Molecular Aspect Ratio on Structure, Dynamics and Phase Stability of Thermotropic Liquid Crystals Studied by Molecular Dynamics Simulation. Solid State Commun 2023, 366–367.

DOI: 10.1016/j.ssc.2023.115147

Google Scholar

[31] Chen, G.; Wei, W.; Li, S.; Zhou, X.; Li, Z.; Peng, H.; Xie, X. Liquid Crystal-Assisted Manufacturing of Flexible Holographic Polymer Nanocomposites for High-Security Level Anticounterfeiting. Mater Chem Front 2022, 6.

DOI: 10.1039/d2qm00744d

Google Scholar

[32] V V, M.; Hegde, V.N.; S, D.; R, S. Comparison of Structural and Mechanical Properties of Suvin and MCU-5 Cotton Fibres. Advances in Materials and Processing Technologies 2022, 8, 1777–1790.

DOI: 10.1080/2374068X.2021.1878697

Google Scholar

[33] Wilkins, D.M.; Grisafi, A.; Yang, Y.; Lao, K.U.; DiStasio, R.A.; Ceriotti, M. Accurate Molecular Polarizabilities with Coupled Cluster Theory and Machine Learning. Proc Natl Acad Sci U S A 2019, 116.

DOI: 10.1073/pnas.1816132116

Google Scholar

[34] Syurik, J.; Jacucci, G.; Onelli, O.D.; Hölscher, H.; Vignolini, S. Bio-Inspired Highly Scattering Networks via Polymer Phase Separation. Adv Funct Mater 2018, 28.

DOI: 10.1002/adfm.201706901

Google Scholar

[35] Somashekar, R.; Revannasiddaiah, D.; Madhava, M.S.; Subramhanyam, H.S.; Krishnamurti, D. BIREFRINGENCE OF SOME NEMATIC COMPOUNDS. Mol Cryst Liq Cryst 1978, 45.

DOI: 10.1080/15421407808083972

Google Scholar

[36] Kittel, C. Introduction to Solid State Physics, 8th Edition. Wiley & Sons, New York, NY 2004.

Google Scholar

[37] Willis, F.; Leisure, R.; Kanashiro, T. Temperature Dependence of the Elastic Constants of through a First-Order Structural Phase Transition. Phys Rev B Condens Matter Mater Phys 1996, 54.

DOI: 10.1103/PhysRevB.54.9077

Google Scholar