Analysis of the Thermomechanical Behavior of SiC/Si/TiSi2 Cermets Manufactured with Waste Wood from Capirona and Capinuri Peruvian Species

Article Preview

Abstract:

This study analyzes the thermomechanical behavior of SiC/Si/TiSi2 cermets manufactured from Peruvian wood waste of the Capirona and Capinuri species. A sustainable manufacturing process was used that uses sawdust as a precursor. The mechanical properties under compression and the elastic modulus of the cermets were characterized from room temperature to 1400°C. At room temperature, the values achieved exceed 500 MPa in both cermets, with the Capinuri precursor being slightly higher in maximum compressive strength with 691 MPa, but in elastic modulus, the Capirona cermet has a rigidity of 159 GPa. At 500°C, the cermets showed a small reduction in their mechanical performance. At 1100°C, a decrease in strength was observed to 248 MPa for Capinuri and 292 MPa for Capirona and in Young's modulus to 85.18 GPa and 91.92 GPa respectively. At 1400°C, both cermets suffered a significant deterioration of their mechanical properties due to a presumed chemical degradation of the individual components. The results demonstrate the feasibility of using wood waste as precursors for the sustainable manufacturing of advanced composite materials, however, optimization of manufacturing parameters and processes should be considered to improve the performance and stability of this material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-34

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Belitskus, in: Fiber and Whisker Reinforced Ceramics for Structural Applications, edited by CRC Press, (1993), pp.329-352. Available from: https://www.taylorfrancis.com/books/9781482293470/chapters/

DOI: 10.1201/9781482293470-24

Google Scholar

[2] F.G. Caballero: Encyclopedia of Materials: Metals and Alloys, Elsevier, (2022), 1-2380 p. Available from: https://linkinghub.elsevier.com/retrieve/pii/C20181031856

Google Scholar

[3] G.J. Yang and X. Suo: Advanced Nanomaterials and Coatings by Thermal Spray, Vol. i, Elsevier, (2019), 1-328 p. Available from: https://linkinghub.elsevier.com/retrieve/pii/C20170002379

Google Scholar

[4] K. Plucknett: Metals (Basel), Vol. 8, No. 11, (2018), pp.4-6.

Google Scholar

[5] J. Kübarsepp, J. Pirso, K. Juhani and M. Viljus: Int J Mater Prod Technol, Vol. 49, No. 2/3, (2014), p.160. Available from: http://www.inderscience.com/link.php?id=64046

Google Scholar

[6] A.J. Ruys, in: Metal-Reinforced Ceramics, edited by Elsevier, (2021), pp.285-325. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081028698000082

Google Scholar

[7] P. Greil, T. Lifka and A. Kaindl: J Eur Ceram Soc, Vol. 18, No. 14, (1998), pp.1975-1983.

Google Scholar

[8] G. Qiao, R. Ma, N. Cai, C. Zhang and Z. Jin: Mater Sci Eng A, Vol. 323, No. 1-2, (2002), pp.301-305.

Google Scholar

[9] V.S. Kaul, K.T. Faber, R. Sepúlveda, A.R. de Arellano López and J. Martínez-Fernández: Mater Sci Eng A, Vol. 428, No. 1-2, (2006), pp.225-232.

Google Scholar

[10] D.J. Lee, J.J. Jang, H.S. Park, Y.C. Kim, K.H. Lim and S.B. Park, et al.: Ceram Int, Vol. 38, No. 4, (2012), pp.3089-3095.

Google Scholar

[11] .F. Gamarra-Delgado, J.J. Paredes-Paz, V.C. Bringas-Rodríguez, D.L. Mayta-Ponce, G.P. Rodríguez-Guillén and F.A. Huamán-Mamani: Int J Mining, Mater Metall Eng, (2020).

DOI: 10.11159/ijmmme.2020.005

Google Scholar

[12] M. Benavides, D. Mayta, F. Cuzziramos, G. Rodriguez and F. Huaman-Mamani: Adv Mater Lett, Vol. 13, No. 3, (2022), pp.0-0.

DOI: 10.5185/amlett.2022.031701

Google Scholar

[13] V.C. Bringas-Rodríguez, J.F. Gamarra-Delgado, M.L. Benavides-Salinas, C.K. Palomino-Naupa, D.L. Mayta-Ponce and G.P. Rodríguez-Guillén, et al.: Proc World Congr Mech Chem Mater Eng, Vol. i, (2021), pp.1-4.

DOI: 10.11159/mmme21.118

Google Scholar

[14] M. Caccia and J. Narciso: Mater Sci Forum, Vol. 783-786, (2014), pp.1863-1866. Available from: https://www.scientific.net/MSF.783-786.1863

DOI: 10.4028/www.scientific.net/msf.783-786.1863

Google Scholar

[15] M.A. Bautista, J.Q. Cancapa, J.M. Fernandez, M.A. Rodríguez and M. Singh: J Eur Ceram Soc, Vol. 31, No. 7, (2011), pp.1325-1332.

Google Scholar

[16] W. Thielemans, E. Can, S.S. Morye and R.P. Wool: J Appl Polym Sci, Vol. 83, No. 2, (2002), pp.323-331. Available from: https://onlinelibrary.wiley.com/doi/

DOI: 10.1002/app.2247

Google Scholar

[17] M.A. Bautista: Fabricación, caracterización y propiedades mecánicas del SiC biomórfico obtenido a partir de paneles de fibra de madera de densidad media, (2014). Available from: https://idus.us.es/xmlui/handle/11441/24188

Google Scholar

[18] L.M. Muresan, in: Intelligent Coatings for Corrosion Control, edited by Elsevier, (2015), pp.585-602. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780124114678000179

Google Scholar

[19] V.C. Bringas-Rodríguez, F.A. Huamán-Mamani, J.J. Paredes-Paz and J.F. Gamarra-Delgado: Mater Today Proc, Vol. 33, (2020), pp.1835-1839. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214785320337366

DOI: 10.1016/j.matpr.2020.05.175

Google Scholar

[20] J.V. Barbosa García: Fabricación y caracterización de materiales biomiméticos compuestos cerámico-metal. Universidad de Sevilla, (2016).

Google Scholar

[21] A. Sabbadini, F. Cazzaniga and T. Marangon: Microelectron Eng, Vol. 50, No. 1-4, (2000), pp.159-164.

Google Scholar

[22] V.C. Bringas Rodriguez: Fabricación de carburo de silicio biomórfico a partir del aprovechamiento de residuos de aserrín de la industria maderera peruana y la evaluación de sus aspectos ambientales según normativa ISO 14001:2015. Universidad Nacional de San Agustín de Arequipa, (2021).

DOI: 10.24265/horizmed.2021.v21n3.08

Google Scholar

[23] World Wildlife Fund, Inc.: Woods of Peru. World Wildlife Fund Inc., (2011), p.32.

Google Scholar

[24] International Tropical Timber Organization: MUIRATINGA (Maquira coriacea). ITTO, (2024).

Google Scholar

[25] S. Chen, Y. Zeng, X. Xiong, H. Lun, Z. Ye, T. Jiang, et al.: J Eur Ceram Soc, Vol. 41, No. 11, (2021), pp.5445-5456.

Google Scholar