Analysis of Post-Treatment Heating of Stretchable Piezoelectric Electrospun Nanofibers

Article Preview

Abstract:

Electrospun piezoelectric nanofibrous membrane developed from Polyvinylidene fluoride (PVDF) embedded with thermoplastic polyurethane (TPU) composites found to have superior stretchability and piezoactivity. The piezoresponse behavior of different in-situ bended PVDF/TPU, up to 15wt.% of TPU, is examined using various blending ratios of PVDF and TPU. It has been shown that adding TPU with PVDF at certain specific concentration increased the nanofiber's piezo-efficiency.The generated nanomembranes are annealead at different temperatures up to 100°C. An extensive analysis of the effects of annealing is conducted on these nanomats, and it is thought to be a crucial post-treatment method for improving the piezoresponse of the manufactured nanomats. Nanofibers annealed at 100°C showed best effective response compared to all other samples and this revealed the effectiveness of annealing treatment in the enhancement of piezoactivity. The best effective composition of PVDF with 15 wt% TPU after an annealing treatment of 100°C generated a maximum voltage of 3.2 V under the effect of an applied force of 3 N, where unannealed sample of the same PVDF-TPU composition generated only a voltage of 2.2 V. This annealed piezo nanogenerator (PNG), can be considered an optimum option for electromechanical energy harvesting applications that require flexibility and self-power.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-20

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dahman Y, Lo HH, Edney M, in Nanotechnology and Functional Materials for Engineers, ed. by Yaser Dahman ( Elsevier, Amstedam, Netherlands, 2017), p.1 .

DOI: 10.1016/b978-0-323-51256-5.00001-0

Google Scholar

[2] J. Jeevanandam, A Sundaramurthy, V.Sharma, C.Murugan, K.Pal, M.Kodous, M.Danquah, in Sustainable Nanoscale Engineering, ed. by Gyorgy Szekely, Andrew Livingston (Elsevier Inc., 2019) p.83.

DOI: 10.1016/b978-0-12-814681-1.00004-7

Google Scholar

[3] Michael Smith & Sohini Kar-Narayan, Piezoelectric polymers: theory, challenges and opportunities. International Materials Reviews 67, 65 (2022).

DOI: 10.1080/09506608.2021.1915935

Google Scholar

[4] Z. He, F. Rault, M. Lewandowski, E. Mohsenzadeh, and F. Salaün, "Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement," Polymers (Basel) 13, 2, 1 (2021).

DOI: 10.3390/polym13020174

Google Scholar

[5] Sappati K.K. Bhadra. S, Piezoelectric Polymer and Paper Substrates: A Review. Sensors 18, 3605 (2018).

DOI: 10.3390/s18113605

Google Scholar

[6] Wu, Liangke & Jin, Zhaonan & Liu, Yaolu & Ning, Huiming & Liu, Xuyang & Alamusi, & Hu, Ning. Recent advances in the preparation of PVDF-based piezoelectric materials. Nanotechnology Reviews. 11, 1386 (2022).

DOI: 10.1515/ntrev-2022-0082

Google Scholar

[7] F. Calavalle, M. Zaccaria, G. Selleri, T. Cramer, D. Fabiani, and B. Fraboni. Piezoelectric and Electrostatic Properties of Electrospun PVDF-TrFE Nanofibers and their Role in Electromechanical Transduction in Nanogenerators and Strain Sensors. Macromol Mater Eng. 305, 7 (2020).

DOI: 10.1002/mame.202000162

Google Scholar

[8] Tongtong Zhang, Tao Yang, Mei Zhang, Chris R. Bowen, Ya Yang. Recent Progress in Hybridized Nanogenerators for Energy Scavenging. iScience 23, 11 (2020).

DOI: 10.1016/j.isci.2020.101689

Google Scholar

[9] I. Alghoraibi and S. Alomari. Different Methods for Nanofiber Design and Fabrication in Handbook of Nanofibers, Springer International Publishing 1 (2018).

DOI: 10.1007/978-3-319-42789-8_11-2

Google Scholar

[10] L. Xu, F. Liu, Y. Wan, D. D. Ganji, and N. Faraz. Fabrication and applications of electrospun nanofibers. Journal of Nanomaterials, Hindawi Publishing Corporation 1(2015).

DOI: 10.1155/2015/697236

Google Scholar

[11] L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang. Properties and applications of the β phase poly(vinylidene fluoride)," Polymers (Basel) 10, 3,1 (2018).

DOI: 10.3390/polym10030228

Google Scholar

[12] R. P. Vijayakumar, D. V. Khakhar, and A. Misra. Studies on α to β phase transformations in mechanically deformed PVDF films. J Appl Polym Sci. 117, 6, 3491 (2010).

DOI: 10.1002/app.32218

Google Scholar

[13] S. Tiwari, A. Gaur, C. Kumar, and P. Maiti, Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting. Energy 171, 485 (2019).

DOI: 10.1016/j.energy.2019.01.043

Google Scholar

[14] N. Shehata, R. Nair, R. Boualayan, I. Kandas, A. Masrani, E. Elnabawy, N. Omran, M. Gamal, and A. H. Hassanin. Stretchable nanofibers of polyvinylidenefluoride (PVDF)/thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity. Scientific Reports 12, 1(2022).

DOI: 10.1038/s41598-022-11465-5

Google Scholar

[15] M. Satthiyaraju and T. Ramesh. Effect of annealing treatment on PVDF nanofibers for mechanical energy harvesting applications. Mater Res Express 6, 10 (2019).

DOI: 10.1088/2053-1591/ab4037

Google Scholar