Study of the Photocatalytic Efficiencies and Characteristics of Cu Doped TiO2 Coating on Reticulated Stainless Steel Mesh

Article Preview

Abstract:

This study involves the photocatalytic degradation of methylene blue (MB) under visible light using reticulated stainless steel that is coated with copper-doped TiO2. Steel meshes of three different grades are used in the experiment: 50 mesh, 120 mesh and 400 mesh. The coating process coats an average of 0.3 mg/cm2 of Cu–TiO2 on the 50 mesh and the 120 mesh and 0.2 mg/cm2 on the 400 mesh. SEM and XRD characterization show that the roughness of the mesh wire surface increases as the amount of coating is increased. All three types of mesh remove approximately 50% of MB, when coated with 1 mg/cm2 of CuO-TiO2. When the amount of coating is increased to 2.5 mg/cm2, the order for the photocatalytic degradation of MB for the three meshes is 120 mesh (93%) > 400 mesh (91%) > 50 mesh (86%). However, when the amount of coating is further increased to 2.5 mg/cm2, there is no significant difference between the three mesh groups, in terms of MB residue. The study demonstrates that the photocatalytic efficiency is affected by the surface area and thickness of the membrane that forms over the mesh openings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. A. Maithreepala, and R.A. Doong: Chemosphere, Vol. 70 (2008), p.1405

Google Scholar

[2] A.E. Giannakas, M. Antonopoulou, Y. Deligiannakis, and I. Konstantinou: Appl. Catal. B. (2013), Vol. 140-141, p.636

Google Scholar

[3] L. Andronic, and A. Duta: TiO2 thin films for dyes photodegradation. Thin Solid Films Vol. 515 (2007), p.6294

DOI: 10.1016/j.tsf.2006.11.150

Google Scholar

[4] M.E. Fabiyi, and R. L. Skelton: J. Photochem. Photobiol. A Vol. 132 (2000), p.121

Google Scholar

[5] D.S. Kim, and Y. S. Park: Chem. Eng. J. Vol. 116 (2006), pp.133-137.

Google Scholar

[6] M.V. Dozzi, S. Marzorati, M. Longhi, M. Coduri, L. Artiglia, and E. Selli, Appl. Catal. B. Vol. 186 (2016), p.157

DOI: 10.1016/j.apcatb.2016.01.004

Google Scholar

[7] L.F. Chiang, and R.A. Doong: Cu–TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation. J. Hazard. Mater. Vol. 277 (2014), p.84

DOI: 10.1016/j.jhazmat.2014.01.047

Google Scholar

[8] N. Lu, J. Quan, S. Li, H. Chen, Yu, and G. Chen: J. Phys. Chem. C 111 (2007), p.11836

Google Scholar

[9] M.R. Hoffmann, S.T. Martin, W. Choi, and. D.W. Bahnemann: Chem. Rev. Vol. 95 (1995), 69-96.

Google Scholar

[10] Y. Zhu, L. Zhang, L. Wang, Y. Fu, and L. Cao: J. Mater. Chem. Vol. 11 (2001), p.1864

Google Scholar

[11] S. Raizada, A. Sudhaik, S. Patial, V. Hasija, A. A. Parwaz Khan, P. Singh, V. H. Nguye: Arab J Sci Eng Vol. 13 (2020), p.8424

Google Scholar

[12] R. A. Doong, S. M. Chang, and C. W. Tsai:  Appl. Catal. B. Vol. 129 (2013), p.48

Google Scholar

[13] M. T. Merajin, S. Sharifnia, S. N. Hosseini, and N. Yazdanpour: J Taiwan Inst Chem Eng. Vol. 44 (2013), p.239

Google Scholar

[14] M. R. F. Silva, M. A. O. Lourenço, D. M. Tobaldi, C. F. da Silva, M. P. Seabra, and P. Ferreira: Chem. Eng. J. Vol. 387 (2020), p.124099

Google Scholar

[15] S. H. Kment, P. Kmentova, and Kluson: J. Colloid Interface Sci. Vol. 348 (2010), p.198

Google Scholar

[16] A.C. Rodriguez-Torres, L. Cabrera, C. Errico, F. Adan, M. Requejo, Weissmann, and S.S. Stewart: J. Phys. Condens. Matter Vol. 20 (2008), p.135210

Google Scholar

[17] T. Sato, Y. Koizumi, and M. Taya: Biochemical Engineering Journal, Vol. 14 (2003), p.149

Google Scholar

[18] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, Appl. Catal. B. Vol. 31 (2001), p.145

Google Scholar