Absorption Behavior of Methanol Vapor on the Silica Gels

Article Preview

Abstract:

The adsorption behavior of methanol vapor onto three commercial silica gels named SG-1, SG-2 and SG-3 were investigated in this paper. The experimental results showed that SG-1 has the rich microporous, and the larger surface area and microporous volume than SG-2 and SG-3. The equilibrium adsorption data showed that the adsorption capacities of SG-1 was superior to SG-2 and SG-3 for lower concentration of methanol (<150 g/m3). However, SG-2 had higher adsorption capacities than SG-1 and SG-3 for higher concentration of methanol resulting from the condensation in mesopore channels. Three kinds of adsorption equilibrium equations including Langmuir equation, Freundlich equation and Dubinin-Astakov (D-A) equation were used to fit the methanol vapor adsorption isotherms. The results indicated that the experimental data can be well-fitted by D-A equation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1003)

Pages:

156-162

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Wang, H.M. Ang, M.O. Tade, Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art, Environ. Int. 33(20017) 694–705.

DOI: 10.1016/j.envint.2007.02.011

Google Scholar

[2] S. Arriaga, S. Revah, Improving hexane removal by enhancing fungal development in a microbial consortium biofilter, Biotechnol. Bioeng. 90 (2005) 107-115.

DOI: 10.1002/bit.20424

Google Scholar

[3] M. S. Kamal, S. A. Razzak, M. M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs) – A review, Atmos. Environ. 140(2016) 117-134.

DOI: 10.1016/j.atmosenv.2016.05.031

Google Scholar

[4] Z. W. Liu, K. Zhang, Y. Wu, H. X. Xi, Effective enhancement on methanol adsorption in Cu-BTC by combination of lithium-doping and nitrogen-doping functionalization, J. Mater. Sci. 53(2018) 6080-6093.

DOI: 10.1007/s10853-017-1751-9

Google Scholar

[5] S. A. Mirji, S. B. Halligudi, N. Mathew, V. Ravi, N. E. Jacob, K. R. Patil, Adsorption of methanol on Si(100)/SiO2 and mesoporous SBA-15, Colloids and Surfaces A: Physicochem. Eng. Aspects, 287(2006) 51-58.

DOI: 10.1016/j.colsurfa.2006.03.021

Google Scholar

[6] S. A. Mirji, S. B. Halligudi, N. Mathew, N. E. Jacob, K. R. Patil, A. B. Gaikwad, Adsorption of methanol on mesoporous SBA-15, Mater. Lett. 61(2007) 88-92.

DOI: 10.1016/j.matlet.2006.04.012

Google Scholar

[7] B. Dou, Q. Hu, J. Li, S. Qiao, Z. Hao, Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry, J. Hazard Mater. 186(2011) 1615-1624.

DOI: 10.1016/j.jhazmat.2010.12.051

Google Scholar

[8] C. C. Brunchi, J. M. Castillo-Sanchez, A. I. Stankiewicz, H. J. M. Kramer, T. J. H. Vlugt, Adsorption of volatile organic compounds. Experimental and theoretical study, Ind. Eng. Chem. Res. 51(2012) 16697-16708.

DOI: 10.1021/ie302394d

Google Scholar

[9] D. Das, V. Gaur, N. Verma, Removal of volatile organic compound by activated carbon fiber, Carbon, 42(2004) 2949-2962.

DOI: 10.1016/j.carbon.2004.07.008

Google Scholar

[10] T. Yamamoto, S. Kataoka, T. Ohmori, Characterization of carbon cryogel microspheres as adsorbents for VOC, J. Hazard. Mater. 177(2010) 331-335.

DOI: 10.1016/j.jhazmat.2009.12.036

Google Scholar

[11] M. E. Ramos, P. R. Boneli, A. L. Cukierman, M. M. Ribeiro-Carrott, P. J. Carrott, Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor, J. Hazard. Mater. 177(2010) 175-182.

DOI: 10.1016/j.jhazmat.2009.12.014

Google Scholar

[12] J. Brennan, T. Bandosz, K. Thomson, K. Gubbins, Water in porous carbons, Colloids and Surfaces A: Physicochem. Eng. Aspects, 187(2001) 539-568.

DOI: 10.1016/s0927-7757(01)00644-6

Google Scholar

[13] F. Cosnier, A. Celzard, G. Furdin, D. Bégin, J. F. Marêché, Influence of water on the dynamic adsorption of chlorinated VOCs on active carbon: relative humidity of the gas phase versus pre-adsorbed water, Adsorpt. Sci. Technol. 24(2006) 215-228.

DOI: 10.1260/026361706778812871

Google Scholar

[14] R. Zerbonia, C. Brockmann, P. Peterson, D. Housley, Carbon bed fires and the use of carbon canisters for air emissions control on fixed-roof tanks, J. Air Waste Manage. 51(2002) 1617-1627.

DOI: 10.1080/10473289.2001.10464393

Google Scholar

[15] Ki-Joong Kim, Ho-Geun Ahn, The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating, Micropor. Mesopor. Mat. 152(2012) 78-83.

DOI: 10.1016/j.micromeso.2011.11.051

Google Scholar

[16] S. Qiao, S. Bhatia, D. Nicholson, Study of hexane adsorption in nanoporous MCM-41 silica, Langmuir, 20(2004) 389-395.

DOI: 10.1021/la0353430

Google Scholar

[17] C. Long, W. H. Yu, A. M. Li, Adsorption of n-hexane vapor by macroporous and hypercrosslinked polymeric resins: Equilibrium and breakthrough analysis, Chem. Eng. J. 221(2013) 105-110.

DOI: 10.1016/j.cej.2013.01.083

Google Scholar

[18] K. Kosuge, S. Kubo, N. Kikukawa, M. Takemori, Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance, Langmuir, 23(2007) 3095-3102.

DOI: 10.1021/la062616t

Google Scholar

[19] D. P. Serrano, G. Calleja, J. A. Botas, F. J. Gutierrez, Adsorption and hydrophobic properties of mesostructured MCM-41and SBA-15 materials for VOC removal, Ind. Eng. Chem. Res. 43(2004) 7010–7018.

DOI: 10.1021/ie040108d

Google Scholar

[20] H. Watanabe, K. Fujikata, Y. Oaki, H. Imai, Dynamic adsorption of toluene on pore-size tuned supermicroporous silicas, Micropor. Mesopor. Mat. 214(2015) 41-44.

DOI: 10.1016/j.micromeso.2015.04.034

Google Scholar