Keratin/Egg White Blend Particles: Preparation and Characterization

Article Preview

Abstract:

The objectives of this work are to prepare keratin/egg white blend particles by emulsification solvent diffusion method and characterize their properties. The different factors including concentration, water: oil phases, spinning rate, and blending ratio were optimized. The morphological observation indicated that the shapes and sizes of particles were variable by the condition used. FTIR spectra indicated that all particles co-existed of α-helix and random coil structures. The decomposition rate of all particles found at least 4 steps and the blend particles have lower Td, max than the native protein particles. The obtained results were advantaged for the development of the keratin/egg white blend particles for specific applications such as drug-controlled release systems.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1003)

Pages:

179-184

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Tanabe, N. Okitsu, A. Tachibana, K. Yamauchi. Preparation and characterization of keratin-chitosan composite film, Biomaterials 23 (2002) 817-825.

DOI: 10.1016/s0142-9612(01)00187-9

Google Scholar

[2] S. Reichl. Films based on human hair keratin as substrates for cell culture and tissue engineering, Biomaterials 30 (2009) 6854-6866.

DOI: 10.1016/j.biomaterials.2009.08.051

Google Scholar

[3] K. Yamauchi, A. Yamauchi, T. Kusunoki, A. Kohda, Y. Konishi. Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films, J. Biomed. Mater. Res. 31 (1996) 439-444.

DOI: 10.1002/(sici)1097-4636(199608)31:4<439::aid-jbm1>3.0.co;2-m

Google Scholar

[4] K. Yamauchi, M. Maniwa, T. Mori. Cultivation of fibroblast cells on keratin-coated substrata, J. Biomater. Sci. 9 (1998) 259-270.

DOI: 10.1163/156856298x00640

Google Scholar

[5] A. Vasconcelos, G. Freddi, A. Cavaco-Paulo. Biodegradable materials based on silk fibroin and keratin, Biomacromolecules 9 (2008) 1299-1305.

DOI: 10.1021/bm7012789

Google Scholar

[6] M.N. Khan, T. Islam, M.A. Alam, R.A. Khan, Bioproteins: Fabrication and application, in M. Mishra (Eds.), Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, CRC Press, Taylor & Francis Group, 2015, pp.961-978.

DOI: 10.1081/e-ebpp-120049962

Google Scholar

[7] S.N. Khot. Development and application of triglyceride-based polymers and composites, J. Agri. Food Chem. 49 (2001) 3957-3964.

Google Scholar

[8] Y.H. Kuan, R. Bhat, A.A. Karim. Emulsifying and foaming properties of ultraviolet-irradiated egg white protein and sodium caseinate, J. Agric. Food Chem. 59 (2011) 4111-4118.

DOI: 10.1021/jf104050k

Google Scholar

[9] F. Geng, X. Huang, M. Ma. Hen egg white ovomacroglobulin promotes fibroblast migration via mediating cell adhesion and cytoskeleton, J. Sci. Food and Agric. 96 (2016) 3188-3194.

DOI: 10.1002/jsfa.7498

Google Scholar

[10] S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, P. Mohammadi, E. Gaudiello, S. Bonakdar, M. Solati-Hashjin, A. Marsano, N. Aghdami, A. Scherberich, H. Baharvand, I. Martin. Facile fabrication of egg white macroporous sponges for tissue regeneration, Adv. Health. Mater. 4 (2015) 2281-2290.

DOI: 10.1002/adhm.201500482

Google Scholar

[11] W. Mizunoya, A. Tashima, Y. Sato, R. Tatsumi, Y.Ikeuchi. The growth-promoting activity of egg white proteins in the C2C12 myoblast cell line, Ani. Sci. J. 86 (2015) 194-199.

DOI: 10.1111/asj.12257

Google Scholar

[12] M. Tomczyńska-Mlekoa, K. Terpiłowski, S. Mlekoc. New product development: Cellulose/egg white protein blend fibers, Carbohyd. Polym. 126 (2015) 168-174.

DOI: 10.1016/j.carbpol.2015.03.008

Google Scholar

[13] S. Wongsasulak, M. Patapeejumruswong, J. Weiss, P. Supaphol, T. Yoovidhya. Electrospinning of food -grade nanofibers from cellulose acetate and egg albumen blends, J. Food Eng. 98 (2010) 370-376.

DOI: 10.1016/j.jfoodeng.2010.01.014

Google Scholar

[14] P. Zahedi, M. Fallah-Darrehchi. Electrospun egg albumin-PVA nanofibers containing tetracycline hydrochloride: Morphological, drug release, antibacterial, thermal and mechanical properties, Fib. Polym. 16 (2015) 2184-2192.

DOI: 10.1007/s12221-015-5457-9

Google Scholar

[15] P. Srihanam, Y. Srisuwan, T. Imsombut, Y. Baimark. Silk fibroin microspheres prepared by the water-in-oil emulsion solvent diffusion method for protein delivery, Korean J. Chem. Eng. 28 (2011) 293-297.

DOI: 10.1007/s11814-010-0322-4

Google Scholar

[16] O. Cheerarot, Y. Baimark. Biodegradable silk fibroin/chitosan blend microparticles prepared by emulsification-diffusion method, E-Polymers 15 (2015) 67-74.

DOI: 10.1515/epoly-2014-0134

Google Scholar

[17] M. Srisa-ard, Y. Baimark. Controlling conformational transition of silk fibroin microspheres by water vapor for controlled release drug delivery, Particul. Sci. Technol. 31 (2013) 379-384.

DOI: 10.1080/02726351.2013.766289

Google Scholar

[18] L.T. Lim, Y. Mine, M.A. Tung. Transglutaminase cross-linked egg white protein films: tensile properties and oxygen permeability, J. Agric. Food Chem. 46 (1998) 4022-4029.

DOI: 10.1021/jf980567n

Google Scholar

[19] R. You, J. Zhang, S. Gu, Y. Zhou, X. Li, D. Ye, W. Xu. Regenerated egg white/silk fibroin composite films for biomedical applications, Mater. Sci. Eng. C 79 (2017) 430-435.

DOI: 10.1016/j.msec.2017.05.063

Google Scholar

[20] Y. Srisuwan, Y. Baimark, P. Srihanam. Preparation of regenerated silk sericin/silk fibroin blend microparticles by emulsification-diffusion method for controlled release drug delivery, Particul. Sci. Technol. 35 (2016) 1-6.

DOI: 10.1080/02726351.2016.1163301

Google Scholar

[21] A. Aluigi, M. Ballestri, A. Guerrini, G. Sotgiu, Cl. Ferroni, F. Corticelli, M.B. Gariboldi, E. Monti, V. Greta. Organic solvent-free preparation of keratin nanoparticles as doxorubicin carriers for antitumour activity, Mater. Sci. .Eng. C 90 (2018) 476-484.

DOI: 10.1016/j.msec.2018.04.088

Google Scholar

[22] P. Hill, H. Brantley, M. van Dyke. Some properties of keratin biomaterials: Kerateines, Biomaterials 31 (2010) 585-93.

DOI: 10.1016/j.biomaterials.2009.09.076

Google Scholar

[23] Y. Dou, B. Zhang, M. He, G. Yin, C. Yingde. The structure, tensile properties and water resistance of hydrolyzed feather keratin-based bioplastics, Chinese J. Chem. Eng. 24 (2016) 415-420.

DOI: 10.1016/j.cjche.2015.11.007

Google Scholar

[24] J.R. Barone, W.F. Schmidt. Effect of formic acid exposure on keratin fiber derived from poultry feather biomass, Biores. Technol. 97 (2006) 233-242.

DOI: 10.1016/j.biortech.2005.02.039

Google Scholar

[25] X. Hu, D. Kaplan, P. Cebe. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy, Macromolecules 39 (2006) 6161-6170.

DOI: 10.1021/ma0610109

Google Scholar