[1]
T. Tanabe, N. Okitsu, A. Tachibana, K. Yamauchi. Preparation and characterization of keratin-chitosan composite film, Biomaterials 23 (2002) 817-825.
DOI: 10.1016/s0142-9612(01)00187-9
Google Scholar
[2]
S. Reichl. Films based on human hair keratin as substrates for cell culture and tissue engineering, Biomaterials 30 (2009) 6854-6866.
DOI: 10.1016/j.biomaterials.2009.08.051
Google Scholar
[3]
K. Yamauchi, A. Yamauchi, T. Kusunoki, A. Kohda, Y. Konishi. Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films, J. Biomed. Mater. Res. 31 (1996) 439-444.
DOI: 10.1002/(sici)1097-4636(199608)31:4<439::aid-jbm1>3.0.co;2-m
Google Scholar
[4]
K. Yamauchi, M. Maniwa, T. Mori. Cultivation of fibroblast cells on keratin-coated substrata, J. Biomater. Sci. 9 (1998) 259-270.
DOI: 10.1163/156856298x00640
Google Scholar
[5]
A. Vasconcelos, G. Freddi, A. Cavaco-Paulo. Biodegradable materials based on silk fibroin and keratin, Biomacromolecules 9 (2008) 1299-1305.
DOI: 10.1021/bm7012789
Google Scholar
[6]
M.N. Khan, T. Islam, M.A. Alam, R.A. Khan, Bioproteins: Fabrication and application, in M. Mishra (Eds.), Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, CRC Press, Taylor & Francis Group, 2015, pp.961-978.
DOI: 10.1081/e-ebpp-120049962
Google Scholar
[7]
S.N. Khot. Development and application of triglyceride-based polymers and composites, J. Agri. Food Chem. 49 (2001) 3957-3964.
Google Scholar
[8]
Y.H. Kuan, R. Bhat, A.A. Karim. Emulsifying and foaming properties of ultraviolet-irradiated egg white protein and sodium caseinate, J. Agric. Food Chem. 59 (2011) 4111-4118.
DOI: 10.1021/jf104050k
Google Scholar
[9]
F. Geng, X. Huang, M. Ma. Hen egg white ovomacroglobulin promotes fibroblast migration via mediating cell adhesion and cytoskeleton, J. Sci. Food and Agric. 96 (2016) 3188-3194.
DOI: 10.1002/jsfa.7498
Google Scholar
[10]
S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, P. Mohammadi, E. Gaudiello, S. Bonakdar, M. Solati-Hashjin, A. Marsano, N. Aghdami, A. Scherberich, H. Baharvand, I. Martin. Facile fabrication of egg white macroporous sponges for tissue regeneration, Adv. Health. Mater. 4 (2015) 2281-2290.
DOI: 10.1002/adhm.201500482
Google Scholar
[11]
W. Mizunoya, A. Tashima, Y. Sato, R. Tatsumi, Y.Ikeuchi. The growth-promoting activity of egg white proteins in the C2C12 myoblast cell line, Ani. Sci. J. 86 (2015) 194-199.
DOI: 10.1111/asj.12257
Google Scholar
[12]
M. Tomczyńska-Mlekoa, K. Terpiłowski, S. Mlekoc. New product development: Cellulose/egg white protein blend fibers, Carbohyd. Polym. 126 (2015) 168-174.
DOI: 10.1016/j.carbpol.2015.03.008
Google Scholar
[13]
S. Wongsasulak, M. Patapeejumruswong, J. Weiss, P. Supaphol, T. Yoovidhya. Electrospinning of food -grade nanofibers from cellulose acetate and egg albumen blends, J. Food Eng. 98 (2010) 370-376.
DOI: 10.1016/j.jfoodeng.2010.01.014
Google Scholar
[14]
P. Zahedi, M. Fallah-Darrehchi. Electrospun egg albumin-PVA nanofibers containing tetracycline hydrochloride: Morphological, drug release, antibacterial, thermal and mechanical properties, Fib. Polym. 16 (2015) 2184-2192.
DOI: 10.1007/s12221-015-5457-9
Google Scholar
[15]
P. Srihanam, Y. Srisuwan, T. Imsombut, Y. Baimark. Silk fibroin microspheres prepared by the water-in-oil emulsion solvent diffusion method for protein delivery, Korean J. Chem. Eng. 28 (2011) 293-297.
DOI: 10.1007/s11814-010-0322-4
Google Scholar
[16]
O. Cheerarot, Y. Baimark. Biodegradable silk fibroin/chitosan blend microparticles prepared by emulsification-diffusion method, E-Polymers 15 (2015) 67-74.
DOI: 10.1515/epoly-2014-0134
Google Scholar
[17]
M. Srisa-ard, Y. Baimark. Controlling conformational transition of silk fibroin microspheres by water vapor for controlled release drug delivery, Particul. Sci. Technol. 31 (2013) 379-384.
DOI: 10.1080/02726351.2013.766289
Google Scholar
[18]
L.T. Lim, Y. Mine, M.A. Tung. Transglutaminase cross-linked egg white protein films: tensile properties and oxygen permeability, J. Agric. Food Chem. 46 (1998) 4022-4029.
DOI: 10.1021/jf980567n
Google Scholar
[19]
R. You, J. Zhang, S. Gu, Y. Zhou, X. Li, D. Ye, W. Xu. Regenerated egg white/silk fibroin composite films for biomedical applications, Mater. Sci. Eng. C 79 (2017) 430-435.
DOI: 10.1016/j.msec.2017.05.063
Google Scholar
[20]
Y. Srisuwan, Y. Baimark, P. Srihanam. Preparation of regenerated silk sericin/silk fibroin blend microparticles by emulsification-diffusion method for controlled release drug delivery, Particul. Sci. Technol. 35 (2016) 1-6.
DOI: 10.1080/02726351.2016.1163301
Google Scholar
[21]
A. Aluigi, M. Ballestri, A. Guerrini, G. Sotgiu, Cl. Ferroni, F. Corticelli, M.B. Gariboldi, E. Monti, V. Greta. Organic solvent-free preparation of keratin nanoparticles as doxorubicin carriers for antitumour activity, Mater. Sci. .Eng. C 90 (2018) 476-484.
DOI: 10.1016/j.msec.2018.04.088
Google Scholar
[22]
P. Hill, H. Brantley, M. van Dyke. Some properties of keratin biomaterials: Kerateines, Biomaterials 31 (2010) 585-93.
DOI: 10.1016/j.biomaterials.2009.09.076
Google Scholar
[23]
Y. Dou, B. Zhang, M. He, G. Yin, C. Yingde. The structure, tensile properties and water resistance of hydrolyzed feather keratin-based bioplastics, Chinese J. Chem. Eng. 24 (2016) 415-420.
DOI: 10.1016/j.cjche.2015.11.007
Google Scholar
[24]
J.R. Barone, W.F. Schmidt. Effect of formic acid exposure on keratin fiber derived from poultry feather biomass, Biores. Technol. 97 (2006) 233-242.
DOI: 10.1016/j.biortech.2005.02.039
Google Scholar
[25]
X. Hu, D. Kaplan, P. Cebe. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy, Macromolecules 39 (2006) 6161-6170.
DOI: 10.1021/ma0610109
Google Scholar