[1]
K.V. Pochiraju, G.P. Tandon, G.A. Schoeppner, Long-Term Durability of Polymeric Matrix Composites, Springer Science+Business Media, New York, NY, 2012. https://doi.org/10.1007/978-1-4419-9308-3.
DOI: 10.1007/978-1-4419-9308-3
Google Scholar
[2]
M. Jawaid, M. Thariq, N. Saba, Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing, Cambridge, 2019. https://doi.org/10.1007/978-1-4419-9308-3.
DOI: 10.1016/b978-0-08-102290-0.05001-7
Google Scholar
[3]
T.P. Sathishkumar, S. Satheeshkumar, J. Naveen, Glass fiber-reinforced polymer composites – a review, J. Reinf. Plast. Compos. 33 (2014) 1258–1275. https://doi.org/10.1177/0731684414530790.
DOI: 10.1177/0731684414530790
Google Scholar
[4]
A.N. Blaznov, A.S. Krasnova, A.A. Krasnov, M.Е. Zhurkovsky, Geometric and mechanical characterization of ribbed FRP rebars, Polym. Test. 63 (2017) 434-439. https://doi.org/10.1016/j.polymertesting.2017.09.006.
DOI: 10.1016/j.polymertesting.2017.09.006
Google Scholar
[5]
A.N. Blaznov, A.S. Zubkov, N.N. Khodakova, V.V. Samoilenko, T.K. Uglova, Study of elastic-strength properties of basalt-, glass-filled plastics with different winding schemes, Glass Ceram. 75 (2018) 69-74. https://doi.org/10.1007/s10717-018-0031-8.
DOI: 10.1007/s10717-018-0031-8
Google Scholar
[6]
R.P. Brown, Handbook of Polymer Testing: Short-Term Mechanical Tests, Rapra Technology Limited, Shrewsbury, UK, (2002).
Google Scholar
[7]
A.N. Blaznov, N.N. Khodakova, T.K. Uglova, Methods of studying interphase interaction processes, Glass Ceram. 76 (2019) 33-37. https://doi.org/10.1007/s10717-019-00127-0.
DOI: 10.1007/s10717-019-00127-0
Google Scholar
[8]
J.S. Kim, J.H. Lim, Y.Huh, Melt-spinning basalt fibers based on dielectric heating and steady-state process characteristics, Fiber Polym. 14 (2013) 1148–1156. https://doi.org/10.1007/s12221-013-1148-6.
DOI: 10.1007/s12221-013-1148-6
Google Scholar
[9]
V. Dhand, G. Mittal, K.Y. Rhee, S.J. Park, D. Hui, A short review on basalt fiber reinforced polymer composites, Compos. Part B Eng. 73 (2015) 166– 180. https://doi.org/10.1016/j.compositesb.2014.12.011.
DOI: 10.1016/j.compositesb.2014.12.011
Google Scholar
[10]
V. Lopresto, C. Leone, I. De Iorio, Mechanical characterisation of basalt fibre reinforced plastic, Compos. Part B Eng. 42 (2011) 717– 723. https://doi.org/10.1016/j.compositesb.2011.01.030.
DOI: 10.1016/j.compositesb.2011.01.030
Google Scholar
[11]
E. Quagliarini, F. Monni, F. Bondioli, S. Lenci, Basalt fiber ropes and rods: durability tests for their use in building engineering, J. Build. Eng. 5 (2016) 142–150. https://doi.org/10.1016/j.jobe.2015.12.003.
DOI: 10.1016/j.jobe.2015.12.003
Google Scholar
[12]
F. Elgabbas, P. Vincent, E.A. Ahmed, B. Benmokrane, Experimental testing of basalt-fiber-reinforced polymer bars in concrete beams, Compos. Part B Eng. 91 (2016) 205–218. https://doi.org/10.1016/j.compositesb.2016.01.045.
DOI: 10.1016/j.compositesb.2016.01.045
Google Scholar
[13]
C. High, H.M. Seliem, A. El-Safty, S.H. Rizkalla, Use of basalt fibers for concrete structures, Constr. Build. Mater. 96 (2015) 37–46. https://doi.org/10.1016/j.conbuildmat.2015.07.138.
DOI: 10.1016/j.conbuildmat.2015.07.138
Google Scholar
[14]
T. Ovitigala, M.A. Issa, Flexural behavior of concrete beams reinforced with basalt fiber reinforcement polymer (BFRP) bars, in: Proceedings of the International Symposium on Fiber Reinforced Polymer for Reinforced Concrete Structures, 26-28 June 2013, p.249–260. Guimarães, Portugal.
DOI: 10.14359/14872
Google Scholar
[15]
T.M. Borhan, Thermal and mechanical properties of basalt fibre reinforced concrete, World Acad. Sci. Eng. Technol. 7 (4) (2013) 334–337.
Google Scholar
[16]
F. Gauvin, P. Cousin, M. Robert, Improvement of the interphase between basalt fibers and vinylester by nano-reinforced post-sizing, Fiber Polym. 16 (2015) 434–442. https://doi.org/10.1007/s12221-015-0434-x.
DOI: 10.1007/s12221-015-0434-x
Google Scholar
[17]
J. Karger-Kocsis, H. Mahmood, A. Pegoretti, Recent advances in fiber/matrix interphase engineering for polymer composites, Prog. Mater. Sci. 73 (2015) 1–43. https://doi.org/10.1016/j.pmatsci.2015.02.003.
DOI: 10.1016/j.pmatsci.2015.02.003
Google Scholar
[18]
H. Kim, Thermal characteristics of basalt fiber reinforced epoxybenzoxazine composites, Fiber Polym. 13 (2012) 762–768. https://doi.org/10.1007/s12221-012-0762-z.
DOI: 10.1007/s12221-012-0762-z
Google Scholar
[19]
H. Kim, Enhancement of thermal and physical properties of epoxy composite reinforced with basalt fiber, Fiber Polym. 14 (2013) 1311–1316. https://doi.org/10.1007/s12221-013-1311-0.
DOI: 10.1007/s12221-013-1311-0
Google Scholar
[20]
T.R. Crompton Polymer Reference Book, Rapra Technology Limited, Shrewsbury, SY, (2006).
Google Scholar
[21]
ASTM International. Standard Test Method for Deflection Temperature of Plastics under Flexural Load in Edgewise Position. ASTM D 648-07.
DOI: 10.1520/d0648-00
Google Scholar
[22]
ISO 75-2. Plastics. Determination of temperature of deflection under load. Part 2. Plastics and ebonite.
DOI: 10.3403/30237824
Google Scholar
[23]
DIN 53462, Testing of Plastics. Martens Method of Determining the Temperature of Deflection under Bending Stress, (1976).
Google Scholar
[24]
GOST-R 21341-2014. Plastics and Ebonite. Method of Determining the Martens Heat Resistance Temperature, (2014).
Google Scholar
[25]
A.N. Blaznov, E.V. Atyasova, I.K. Shundrina, V.V. Samoilenko, V.V. Firsov, A.S. Zubkov, Thermomechanical characterization of BFRP and GFRP with different degree of conversion, Polym. Test. 60 (2017) 49–57. https://doi.org/10.1016/j.polymertesting.2017.03.011.
DOI: 10.1016/j.polymertesting.2017.03.011
Google Scholar
[26]
ASTM International. Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures. ASTM D4065e12.
Google Scholar
[27]
ASTM International. Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA). ASTM D7028e07.
DOI: 10.1520/d7028-07r15
Google Scholar
[28]
V.O. Startsev, M.V. Molokov, A.N. Blaznov, M.E. Zhurkovskii, V.T. Erofeev, I.V. Smirnov, Determination of the heat resistance of polymer construction materials by the dynamic mechanical method, Polymer Science, Series D 10 (2017) 313–317. https://doi.org/10.1134/S1995421217040141.
DOI: 10.1134/s1995421217040141
Google Scholar
[29]
ISO 11357-2:1999. Plastics. Differential Scanning Calorimetry (DSC). Part 2. Determination of Glass Transition Temperature, (1999).
DOI: 10.3403/01761508u
Google Scholar
[30]
ISO 11359-2 Plastics. Thermomechanical Analysis (TMA). Part 2: Determination of Coefficient of Linear Thermal Expansion and Glass Transition Temperature, (1999).
DOI: 10.3403/01886065
Google Scholar
[31]
Y. Yang, G. Xian, H. Li, L. Sui, Thermal aging of an anhydride-cured epoxy resin, Polym. Degrad. Stabil. 118 (2015) 111-119. https://doi.org/10.1016/j.polymdegradstab.2015.04.017.
DOI: 10.1016/j.polymdegradstab.2015.04.017
Google Scholar
[32]
Z. Lu, G. Xian, H. Li, Effects of exposure to elevated temperatures and subsequent immersion in water or alkaline solution on the mechanical properties of pultruded BFRP plates, Compos. Part B 77 (2015) 421-430. https://doi.org/10.1016/j.compositesb.2015.03.066.
DOI: 10.1016/j.compositesb.2015.03.066
Google Scholar