Thermomechanical Characterization of Glass Fiber- and Basalt Fiber-Reinforced Plastics

Article Preview

Abstract:

The paper discusses measurement problems of heat deflection and glass transition temperatures of fiber-reinforced plastics by the Martens test and thermomechanical analysis (TMA). By using the Martens test, thermomechanical profiles were obtained for an epoxy binder and glass fiber- (GFRP) and basalt fiber-reinforced (BFRP) plastics under load ranging from 5 to 75 MPa. The onset temperature of severe deformation of GFRP and BFRP was found to be 15–20°С higher than that of the epoxy binder they were made of. GFRP and BFRP were tested by TMA in the lengthwise and crosswise fiber orientations. In crosswise measurement, TMA curves showed two noticeable inflection points corresponding to two thermal transitions. This can be explained by the cured binder being present in two states in the composites. The interfacial layer contiguous to the fibers had a lower glass transition temperature (Tg) than the matrix layer located in the interfibrous space; moreover, Tg of the composites under flexural load was similar to that of the matrix.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1003)

Pages:

196-204

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.V. Pochiraju, G.P. Tandon, G.A. Schoeppner, Long-Term Durability of Polymeric Matrix Composites, Springer Science+Business Media, New York, NY, 2012. https://doi.org/10.1007/978-1-4419-9308-3.

DOI: 10.1007/978-1-4419-9308-3

Google Scholar

[2] M. Jawaid, M. Thariq, N. Saba, Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing, Cambridge, 2019. https://doi.org/10.1007/978-1-4419-9308-3.

DOI: 10.1016/b978-0-08-102290-0.05001-7

Google Scholar

[3] T.P. Sathishkumar, S. Satheeshkumar, J. Naveen, Glass fiber-reinforced polymer composites – a review, J. Reinf. Plast. Compos. 33 (2014) 1258–1275. https://doi.org/10.1177/0731684414530790.

DOI: 10.1177/0731684414530790

Google Scholar

[4] A.N. Blaznov, A.S. Krasnova, A.A. Krasnov, M.Е. Zhurkovsky, Geometric and mechanical characterization of ribbed FRP rebars, Polym. Test. 63 (2017) 434-439. https://doi.org/10.1016/j.polymertesting.2017.09.006.

DOI: 10.1016/j.polymertesting.2017.09.006

Google Scholar

[5] A.N. Blaznov, A.S. Zubkov, N.N. Khodakova, V.V. Samoilenko, T.K. Uglova, Study of elastic-strength properties of basalt-, glass-filled plastics with different winding schemes, Glass Ceram. 75 (2018) 69-74. https://doi.org/10.1007/s10717-018-0031-8.

DOI: 10.1007/s10717-018-0031-8

Google Scholar

[6] R.P. Brown, Handbook of Polymer Testing: Short-Term Mechanical Tests, Rapra Technology Limited, Shrewsbury, UK, (2002).

Google Scholar

[7] A.N. Blaznov, N.N. Khodakova, T.K. Uglova, Methods of studying interphase interaction processes, Glass Ceram. 76 (2019) 33-37. https://doi.org/10.1007/s10717-019-00127-0.

DOI: 10.1007/s10717-019-00127-0

Google Scholar

[8] J.S. Kim, J.H. Lim, Y.Huh, Melt-spinning basalt fibers based on dielectric heating and steady-state process characteristics, Fiber Polym. 14 (2013) 1148–1156. https://doi.org/10.1007/s12221-013-1148-6.

DOI: 10.1007/s12221-013-1148-6

Google Scholar

[9] V. Dhand, G. Mittal, K.Y. Rhee, S.J. Park, D. Hui, A short review on basalt fiber reinforced polymer composites, Compos. Part B Eng. 73 (2015) 166– 180. https://doi.org/10.1016/j.compositesb.2014.12.011.

DOI: 10.1016/j.compositesb.2014.12.011

Google Scholar

[10] V. Lopresto, C. Leone, I. De Iorio, Mechanical characterisation of basalt fibre reinforced plastic, Compos. Part B Eng. 42 (2011) 717– 723. https://doi.org/10.1016/j.compositesb.2011.01.030.

DOI: 10.1016/j.compositesb.2011.01.030

Google Scholar

[11] E. Quagliarini, F. Monni, F. Bondioli, S. Lenci, Basalt fiber ropes and rods: durability tests for their use in building engineering, J. Build. Eng. 5 (2016) 142–150. https://doi.org/10.1016/j.jobe.2015.12.003.

DOI: 10.1016/j.jobe.2015.12.003

Google Scholar

[12] F. Elgabbas, P. Vincent, E.A. Ahmed, B. Benmokrane, Experimental testing of basalt-fiber-reinforced polymer bars in concrete beams, Compos. Part B Eng. 91 (2016) 205–218. https://doi.org/10.1016/j.compositesb.2016.01.045.

DOI: 10.1016/j.compositesb.2016.01.045

Google Scholar

[13] C. High, H.M. Seliem, A. El-Safty, S.H. Rizkalla, Use of basalt fibers for concrete structures, Constr. Build. Mater. 96 (2015) 37–46. https://doi.org/10.1016/j.conbuildmat.2015.07.138.

DOI: 10.1016/j.conbuildmat.2015.07.138

Google Scholar

[14] T. Ovitigala, M.A. Issa, Flexural behavior of concrete beams reinforced with basalt fiber reinforcement polymer (BFRP) bars, in: Proceedings of the International Symposium on Fiber Reinforced Polymer for Reinforced Concrete Structures, 26-28 June 2013, p.249–260. Guimarães, Portugal.

DOI: 10.14359/14872

Google Scholar

[15] T.M. Borhan, Thermal and mechanical properties of basalt fibre reinforced concrete, World Acad. Sci. Eng. Technol. 7 (4) (2013) 334–337.

Google Scholar

[16] F. Gauvin, P. Cousin, M. Robert, Improvement of the interphase between basalt fibers and vinylester by nano-reinforced post-sizing, Fiber Polym. 16 (2015) 434–442. https://doi.org/10.1007/s12221-015-0434-x.

DOI: 10.1007/s12221-015-0434-x

Google Scholar

[17] J. Karger-Kocsis, H. Mahmood, A. Pegoretti, Recent advances in fiber/matrix interphase engineering for polymer composites, Prog. Mater. Sci. 73 (2015) 1–43. https://doi.org/10.1016/j.pmatsci.2015.02.003.

DOI: 10.1016/j.pmatsci.2015.02.003

Google Scholar

[18] H. Kim, Thermal characteristics of basalt fiber reinforced epoxybenzoxazine composites, Fiber Polym. 13 (2012) 762–768. https://doi.org/10.1007/s12221-012-0762-z.

DOI: 10.1007/s12221-012-0762-z

Google Scholar

[19] H. Kim, Enhancement of thermal and physical properties of epoxy composite reinforced with basalt fiber, Fiber Polym. 14 (2013) 1311–1316. https://doi.org/10.1007/s12221-013-1311-0.

DOI: 10.1007/s12221-013-1311-0

Google Scholar

[20] T.R. Crompton Polymer Reference Book, Rapra Technology Limited, Shrewsbury, SY, (2006).

Google Scholar

[21] ASTM International. Standard Test Method for Deflection Temperature of Plastics under Flexural Load in Edgewise Position. ASTM D 648-07.

DOI: 10.1520/d0648-00

Google Scholar

[22] ISO 75-2. Plastics. Determination of temperature of deflection under load. Part 2. Plastics and ebonite.

DOI: 10.3403/30237824

Google Scholar

[23] DIN 53462, Testing of Plastics. Martens Method of Determining the Temperature of Deflection under Bending Stress, (1976).

Google Scholar

[24] GOST-R 21341-2014. Plastics and Ebonite. Method of Determining the Martens Heat Resistance Temperature, (2014).

Google Scholar

[25] A.N. Blaznov, E.V. Atyasova, I.K. Shundrina, V.V. Samoilenko, V.V. Firsov, A.S. Zubkov, Thermomechanical characterization of BFRP and GFRP with different degree of conversion, Polym. Test. 60 (2017) 49–57. https://doi.org/10.1016/j.polymertesting.2017.03.011.

DOI: 10.1016/j.polymertesting.2017.03.011

Google Scholar

[26] ASTM International. Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures. ASTM D4065e12.

Google Scholar

[27] ASTM International. Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA). ASTM D7028e07.

DOI: 10.1520/d7028-07r15

Google Scholar

[28] V.O. Startsev, M.V. Molokov, A.N. Blaznov, M.E. Zhurkovskii, V.T. Erofeev, I.V. Smirnov, Determination of the heat resistance of polymer construction materials by the dynamic mechanical method, Polymer Science, Series D 10 (2017) 313–317. https://doi.org/10.1134/S1995421217040141.

DOI: 10.1134/s1995421217040141

Google Scholar

[29] ISO 11357-2:1999. Plastics. Differential Scanning Calorimetry (DSC). Part 2. Determination of Glass Transition Temperature, (1999).

DOI: 10.3403/01761508u

Google Scholar

[30] ISO 11359-2 Plastics. Thermomechanical Analysis (TMA). Part 2: Determination of Coefficient of Linear Thermal Expansion and Glass Transition Temperature, (1999).

DOI: 10.3403/01886065

Google Scholar

[31] Y. Yang, G. Xian, H. Li, L. Sui, Thermal aging of an anhydride-cured epoxy resin, Polym. Degrad. Stabil. 118 (2015) 111-119. https://doi.org/10.1016/j.polymdegradstab.2015.04.017.

DOI: 10.1016/j.polymdegradstab.2015.04.017

Google Scholar

[32] Z. Lu, G. Xian, H. Li, Effects of exposure to elevated temperatures and subsequent immersion in water or alkaline solution on the mechanical properties of pultruded BFRP plates, Compos. Part B 77 (2015) 421-430. https://doi.org/10.1016/j.compositesb.2015.03.066.

DOI: 10.1016/j.compositesb.2015.03.066

Google Scholar