Improvement of Flexibility of Keratin Film by Zinc Acetate

Article Preview

Abstract:

This work aimed to improve the flexibility of keratin film by blending with zinc acetate. Films were prepared by casting methods before the characterization of their morphology, structure, and crystallinity. The keratin film with zinc acetate had a rougher texture than the native keratin film and changed absorption peaks appeared in the FTIR spectrum. Blending with zinc acetate (Zn(Ac)2) helped to reduce the β-sheet structure as well as the crystallinity of the keratin film. This result clarified that Zn(Ac)2 could improve the flexibility and properties of the brittle and fragile films.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1003)

Pages:

191-195

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Srisuwan, P. Srihanam, Praparation and characterization of keratin/alginate blend microparticles, Adv. Mater. Sci. Eng. 2018 (2018) 1-6.

Google Scholar

[2] T. Tanabe, N. Okitsu, A. Tachibana, K. Yamauchi. Preparation and characterization of keratin-chitosan composite film, Biomaterials 23 (2002) 817-825.

DOI: 10.1016/s0142-9612(01)00187-9

Google Scholar

[3] J. Wang, S. Hao, T. Luo, Z. Cheng, W. Li, F. Gao, T. Guo, Y. Gong, B. Wang. Feather keratin hydrogel for wound repair: Preparation, healing effect and biocompatibility evaluation, Colloid Surf. B 149 (2017) 341-350.

DOI: 10.1016/j.colsurfb.2016.10.038

Google Scholar

[4] J. Wang, S. Hao, T. Luo, T. Zhou, X. Yang, B. Wang. Keratose‏/poly ‏(vinyl alcohol‏) blended nanofibers‏: Fabrication and biocompatibility assessment,‏ Mater. Sci. Eng. C 72 ‏(2017‏) 212-219‏.

Google Scholar

[5] S. Reichl. Films based on human hair keratin as substrates for cell culture and tissue engineering, Biomaterials 30 (2009) 6854-6866.

DOI: 10.1016/j.biomaterials.2009.08.051

Google Scholar

[6] K. Yamauchi, A. Yamauchi, T. Kusunoki, A. Kohda, Y. Konishi. Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films, J. Biomed. Mater. Res. 31 (1996) 439-444.

DOI: 10.1002/(sici)1097-4636(199608)31:4<439::aid-jbm1>3.0.co;2-m

Google Scholar

[7] B. Qiu, X.-f. Xu, R.-h. Deng, G.-q Xia, X.-f. Shang, P.-h. Zhou. Construction of chitosan/ZnO nanocomposite film by in situ precipitation, Int. J. Biol. Macromol. 4 (2012) 2618-2629.

Google Scholar

[8] P. Sudheesh Kumar, V.-K. Lakshmanan, T. Anilkumar, C, Ramya, P. Reshmi, A. Unnikrishnan. Flexible and microporus chitosan hydrogel/nano-ZnO composite bandages for wound dressing: in vitro and in vivo evaluation, Appl. Mater. Interfaces 4 (2012) 2618-2629.

DOI: 10.1021/am300292v

Google Scholar

[9] S.C.M. Fernandes, C.S.R. Freire, A.J.D. Silvestre, C.P. Neto, A. Gandini, L.A. Berglund, L Salmen. Transparent chitosan films reinforces with a high content of nanofibrillated cellulose, Carbohydr. Polym. 81 (2010) 394-401.

DOI: 10.1016/j.carbpol.2010.02.037

Google Scholar

[10] S. Ifuku, A. Ikuta, M. Egusa, H. Kaminaka, H. Izawa, M. Morinoto, H. Saimoto. Preparation of high-strength transparent chitosan film reinforced with surface-deacetylated chitin nanofibers, Carbohydr. Polym. 98 (2013) 1198-1202.

DOI: 10.1016/j.carbpol.2013.07.033

Google Scholar

[11] J.W. Rhim, S.I. Hong, H.M. Park, P.K. Ng. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity, J. Agric. Food Chem. 54 (2006) 5814-5822.

DOI: 10.1021/jf060658h

Google Scholar

[12] H.M. JI, S.I. Hong, H.M.I.L. Jin. Simple fabrication of silver hybridized porus chitosan-based patch patch for transdermal drug-delivery system, Mater. Lett. 95 (2013) 48-51.

DOI: 10.1016/j.matlet.2012.12.078

Google Scholar

[13] H. Gu, X. Xu, H. Zhang, C. Liang, H, Lou, C. Ma, Y. Li, Z. Gu. Chitosan-coated magnetite with covalently grafted polystyrene based carbon nanocomposites for hexavalent chromium adsorption, Eng. Sci. 1 (2018) 46-54.

Google Scholar

[14] Y. He, S. Yang, H. Liu, Q. Chen, C. Lu, Y. Jiang, C. Liu, Z. Guo. Reinforces carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: magnetic field assisted alignment and cryogenic temperature mechanical properties, J. Colloid Interface Sci. 517 (2018) 40-51.

DOI: 10.1016/j.jcis.2018.01.087

Google Scholar

[15] M. Prochoń, A. PrzepiÓrkowska. Innovative application of biopolymer keratin as a filler of synthetic acrylonitrile-butadiene rubber NBR, J. Chem. 2013 (2013) 1-8.

DOI: 10.1155/2013/787269

Google Scholar

[16] A. Aluigi, M. Ballestri, A. Guerrini, G. Sotgiu, Cl. Ferroni, F. Corticelli, M.B. Gariboldi, E. Monti, V. Greta. Organic solvent-free preparation of keratin nanoparticles as doxorubicin carriers for antitumour activity, Mater. Sci. .Eng. C 90 (2018) 476-484.

DOI: 10.1016/j.msec.2018.04.088

Google Scholar

[17] R. You, J. Zhang, S. Gu, Y. Zhou, X. Li, D. Ye, W. Xu. Regenerated egg white/silk fibroin composite films for biomedical applications, Mater. Sci. Eng. C 79 (2017) 430-435.

DOI: 10.1016/j.msec.2017.05.063

Google Scholar

[18] P. Hill, H. Brantley, M. van Dyke. Some properties of keratin biomaterials: Kerateines, Biomaterials 31 (2010) 585-93.

DOI: 10.1016/j.biomaterials.2009.09.076

Google Scholar