[1]
K. Dalziel, Kinetics and Mechanism of Nicotinamide-Nucleotid-Linked Dehydrogenases, Enzymes, 1975, 11:1-60.
DOI: 10.1016/s1874-6047(08)60209-7
Google Scholar
[2]
C.E. Songs, J.K. Lee, S.H. Lee, and S. Lee, New method for the preparation of ( R )-carnitine, Tetrahedron Asymmetry, 1995, 6(5):1063-1066.
DOI: 10.1016/0957-4166(95)00125-9
Google Scholar
[3]
M. Marzi, P. Minetti, G. Moretti, M.O. Tinti, and F. De Angelis, Efficient enantioselective synthesis of (R)-(-)-carnitine from glycerol, Journal of Organic Chemistry, 2000, 65(20):6766.
DOI: 10.1021/jo000503n
Google Scholar
[4]
J.P. Marino, M.S. Mcclure, D.P. Holub, J.V. Comasseto, and F.C. Tucci, Stereocontrolled Synthesis of (-)-Macrolactin A, Journal of the American Chemical Society, 2002, 124(8):1664-1668.
DOI: 10.1021/ja017177t
Google Scholar
[5]
M. Ordonez, Victoria Labastida‐Galvan, Selene Lagunas‐Rivera, ChemInform Abstract: Stereoselective Synthesis of GABOB, Carnitine and Statine Phosphonates Analogues, ChemInform, 2010, 41(26):129-147.
DOI: 10.1002/chin.201026262
Google Scholar
[6]
G. Wang, R.I. Hollingsworth, ChemInform Abstract: Synthetic Routes to L-Carnitine and L-gamma-amino-beta-hydroxybutyric acid from (S)-3-Hydroxybutyrolactone by Functional Group Priority Switching, Tetrahedron Asymmetry, 1999, 10(10):1895-1901.
DOI: 10.1016/s0957-4166(99)00169-x
Google Scholar
[7]
A. Matsuyama, H. Yamamoto, Y. Kobayashi, Practical Application of Recombinant Whole-Cell Biocatalysts for the Manufacturing of Pharmaceutical Intermediates Such as Chiral Alcohols, Organic Process Research & Development, 2002, 6(4):558-561.
DOI: 10.1021/op025514s
Google Scholar
[8]
K. Goldberg, K. Schroer, S. Lütz, and A. Liese, Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols-part I: processes with isolated enzymes, Applied Microbiology and Biotechnology, 2007, 76(2):237-248.
DOI: 10.1007/s00253-007-1002-0
Google Scholar
[9]
M. Kataoka, K. Kita, M. Wada, Y. Yasohara, J. Hasegawa, and S. Shimizu, Novel bioreduction system for the production of chiral alcohols, Applied Microbiology and Biotechnology, 2003, 62(5-6):437-445.
DOI: 10.1007/s00253-003-1347-y
Google Scholar
[10]
M.F.G. Manzano, and C.I.A. Igarzabal, Immobilization of lipase from Candida rugosa on synthesized hydrogel for hydrolysis reaction, J Mol Catal B Enzym, 72 (2011)28-35.
DOI: 10.1016/j.molcatb.2011.04.020
Google Scholar
[11]
J. Zhao, M. Lin, G. Chen, Facile recycling of Escherichia coli and Saccharomyces cerevisiae cells from suspensions using magnetic modification method and mechanism analysis, Colloids and Surfaces B: Biointerfaces, 2018, 169:1-9.
DOI: 10.1016/j.colsurfb.2018.05.006
Google Scholar
[12]
J.F. Hou, F.X. Liu, N. Wu, J.S. Ju, and B. Yu, Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline-degrading Rhodococcus rhodochrous strain, Journal of Nanobiotechnology, 2016, 14(1):5.
DOI: 10.1186/s12951-016-0158-0
Google Scholar