[1]
R. Liu, L. Dai, Zou, Z., Si, C. Drug-loaded poly(L-lactide)/lignin stereocomplex film for enhancing stability and sustained release of trans-resveratrol. Int. J. Biol. Macromol., 119 (2018) 1129-1136.
DOI: 10.1016/j.ijbiomac.2018.08.040
Google Scholar
[2]
X. Zhang, B.H. Tan, Z. Li. Biodegradable polyester shape memory polymers: Recent advances in design, material properties and applications. Mater. Sci. Eng. C, 92 (2018) 1061-1074.
DOI: 10.1016/j.msec.2017.11.008
Google Scholar
[3]
N. Suderman, M.I.N. Isa, N.M. Sarbon. The effect of plasticizers on the functional properties of biodegradable gelatin-based film: A review. Food Biosci., 24 (2018) 111-119.
DOI: 10.1016/j.fbio.2018.06.006
Google Scholar
[4]
F. Jin, R. Hu, S. Park. (2018). Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review. Compos. B Eng., 164 (2018) 287-296.
DOI: 10.1016/j.compositesb.2018.10.078
Google Scholar
[5]
L. Pastorino, E. Dellacasa, P. Petrini, O. Monticelli. Stereocomplex poly (lactic acid) nanocoated chitosan microparticles for the sustained release of hydrophilic drugs. Mater. Sci. Eng. C, 76 (2017) 1129-1135.
DOI: 10.1016/j.msec.2017.03.170
Google Scholar
[6]
S. Fujishiro, K. Kan, M. Akashi, H. Ajiro. Stability of adhesive interfaces by stereocomplex formation of polylactides and hybridization with nanoparticles. Polym. Degrad. Stab., 141 (2017) 69-76.
DOI: 10.1016/j.polymdegradstab.2017.05.010
Google Scholar
[7]
N. Kurokawa, A. Hotta. Thermomechanical properties of highly transparent self-reinforced polylactide composites with electrospun stereocomplex polylactide nanofibers. Polymer, 153 (2018) 214-222.
DOI: 10.1016/j.polymer.2018.08.018
Google Scholar
[8]
Y. Srithep, D. Pholharn, L. Turng, O. Injection molding and characterization of polylactide stereocomplex. Polym. Degrad. Stab., 120 (2015) 290-299.
DOI: 10.1016/j.polymdegradstab.2015.07.017
Google Scholar
[9]
Y. Baimark, W. Rungseesantivanon, N. Prakymoramas. Improvement in melt flow property and flexibility of poly (L-lactide)-b-poly (ethylene glycol)-b-poly(L-lactide) by chain extension reaction for potential use as flexible bioplastics. Mater. Design, 154 (2018) 73-80.
DOI: 10.1016/j.matdes.2018.05.028
Google Scholar
[10]
Q. Xie, C. Yu, P. Pan. Stereocomplex crystallization of polymers with complementary configuration. In Q. Xie, C. Yu, P. Pan (Eds.), Crystallization in multiphase polymer systems. China: Elsevier Inc. (2018) 535-573.
DOI: 10.1016/b978-0-12-809453-2.00017-7
Google Scholar
[11]
S. Pasee, Y. Baimark. Improvement in mechanical properties and heat resistance of PLLA-b-PEG-b-PLLA by melt blending with PDLA-b-PEG-b-PDLA for potential use as high-performance bioplastics. Adv. Polym. Technol., 2019 (2019) 1-9.
DOI: 10.1155/2019/8690650
Google Scholar
[12]
G. Pan, H. Xu, B. Mu, B. Ma, Y. Yang. A clean approach for potential continuous mass production of high-molecular-weight polylactide fi bers with fully stereo-complexed crystallites. J. Clean. Prod., 176 (2018) 151-158.
DOI: 10.1016/j.jclepro.2017.12.096
Google Scholar
[13]
Z. Jing, X. Shi, G. Zhang. Compitative stereocomplexation and homocrystallization behaviors in the poly(lactide) blends of PLLA and PDLA-PEG-PDLA with controlled block length. Polymers, 9 (2017) 1-19.
DOI: 10.3390/polym9030107
Google Scholar
[14]
S. Tacha, T. Saelee, W. Khotasen, W. Punyodom, R. Molloy, P. Worajittiphon, K. Manokruang. Stereocomplexation of PLL/PDL-PEG-PDL blends: Effects of blend morphology on film toughness. Eur. Polym. J., 69 (2015) 308-318.
DOI: 10.1016/j.eurpolymj.2015.06.015
Google Scholar
[15]
Y. Kang, P. Chen, X. Shi, G. Zhang, C. Wang. Multilevel structural stereocomplex polylactic acid/collagen membranes by pattern electrospinning for tissue engineering. Polymer, 156 (2018) 250-260.
DOI: 10.1016/j.polymer.2018.10.009
Google Scholar
[16]
C. Busatto, J. Pesoa, I. Helbling, J. Luna, D. Estenoz. Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling. Inter. J. Pharm., 536 (2018) 360-369.
DOI: 10.1016/j.ijpharm.2017.12.006
Google Scholar
[17]
T. Phromsopha, Y. Baimark. Preparation of starch/gelatin blend microparticles by a water-in-oil emulsion method for controlled release drug delivery. Int. J. Biomater., 2014 (2014) 1-7.
DOI: 10.1155/2014/829490
Google Scholar
[18]
A. Gao, F. Liu, Z. Xiong, Q. Yang. Tunable adhesion of superoleophilic/superhydrophobic poly(lactic acid) membrane for controlled-release of oil soluble drugs. J. Colloid Interface Sci., 505 (2017) 49-58.
DOI: 10.1016/j.jcis.2017.05.071
Google Scholar