Wafer-Level near Zero Field Spin Dependent Charge Pumping: Effects of Nitrogen on 4H-SiC MOSFETs

Article Preview

Abstract:

In this work, we describe a new way to measure spin dependent charge capture events at MOSFET interfaces called near-zero-field spin dependent charge pumping (NZF SDCP) which yields similar information as conventional electron paramagnetic resonance. We find that NO anneals have a significant effect on the spectra obtained from 4H-SiC MOSFETs. We also likely resolve hyperfine interactions which are important for defect identification. Finally, we fully integrate a NZF SDCP measurement system into a wafer prober for high throughput applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

573-580

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Umeda et al., Behavior of nitrogen atoms in SiC-SiO2 interfaces studied by electrically detected magnetic resonance,, Appl. Phys. Lett., vol. 99, no. 14, p.8–11, (2011).

DOI: 10.1063/1.3644156

Google Scholar

[2] C. J. Cochrane, P. M. Lenahan, and A. J. Lelis, Identification of a silicon vacancy as an important defect in 4H SiC metal oxide semiconducting field effect transistor using spin dependent recombination,, Appl. Phys. Lett., vol. 100, no. 2, (2012).

DOI: 10.1063/1.3675857

Google Scholar

[3] M. A. Anders, P. M. Lenahan, and A. J. Lelis, Multi-resonance frequency spin dependent charge pumping and spin dependent recombination - Applied to the 4H-SiC/SiO2 interface,, J. Appl. Phys., vol. 122, no. 23, (2017).

DOI: 10.1063/1.4996298

Google Scholar

[4] C. J. Cochrane, P. M. Lenahan, and A. J. Lelis, An electrically detected magnetic resonance study of performance limiting defects in SiC metal oxide semiconductor field effect transistors,, J. Appl. Phys., vol. 109, no. 1, (2011).

DOI: 10.1063/1.3530600

Google Scholar

[5] H. Itoh, N. Hayakawa, I. Nashiyama, and E. Sakuma, Electron spin resonance in electron‐irradiated 3C‐SiC,, J. Appl. Phys., vol. 66, no. 9, p.4529–4531, Nov. (1989).

DOI: 10.1063/1.343920

Google Scholar

[6] N. T. Son et al., Electron-paramagnetic-resonance studies of defects in electron-irradiated p-type 4H and 6H SiC,, Phys. B Condens. Matter, vol. 273–274, p.655–658, (1999).

DOI: 10.1016/s0921-4526(99)00597-9

Google Scholar

[7] D. J. McCrory et al., Slow- and rapid-scan frequency-swept electrically detected magnetic resonance of MOSFETs with a non-resonant microwave probe within a semiconductor wafer-probing station,, Rev. Sci. Instrum., vol. 90, no. 1, (2019).

DOI: 10.1063/1.5053665

Google Scholar

[8] R. Kosugi, T. Umeda, and Y. Sakuma, Fixed nitrogen atoms in the SiO2/SiC interface region and their direct relationship to interface trap density,, Appl. Phys. Lett., vol. 99, no. 18, p.2009–2012, (2011).

DOI: 10.1063/1.3659689

Google Scholar

[9] C. J. Cochrane, P. M. Lenahan, and A. J. Lelis, The effect of nitric oxide anneals on silicon vacancies at and very near the interface of 4H SiC metal oxide semiconducting field effect transistors using electrically detected magnetic resonance,, Appl. Phys. Lett., vol. 102, no. 19, p.1–5, (2013).

DOI: 10.1063/1.4805355

Google Scholar

[10] M. A. Anders, P. M. Lenahan, A. H. Edwards, P. A. Schultz, and R. M. Van Ginhoven, Effects of nitrogen on the interface density of states distribution in 4H-SiC metal oxide semiconductor field effect transistors: Super-hyperfine interactions and near interface silicon vacancy energy levels,, Journal of Applied Physics, vol. 124, no. 18. (2018).

DOI: 10.1063/1.5045668

Google Scholar

[11] J. S. Brugler and P. G. A. Jespers, Charge pumping in MOS devices,, IEEE Trans. Electron Devices, vol. 16, no. 3, p.297–302, Mar. (1969).

DOI: 10.1109/t-ed.1969.16744

Google Scholar

[12] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker, A Reliable Approach to Charge-Pumping Measurements in MOS Transistors,, IEEE Trans. Electron Devices, vol. 31, no. 1, p.42–53, (1984).

DOI: 10.1109/t-ed.1984.21472

Google Scholar

[13] B. C. Bittel, P. M. Lenahan, J. T. Ryan, J. Fronheiser, and A. J. Lelis, Spin dependent charge pumping in SiC metal-oxide-semiconductor field-effect-transistors,, Appl. Phys. Lett., vol. 99, no. 8, p.1–4, (2011).

DOI: 10.1063/1.3630024

Google Scholar

[14] D. Kaplan, I. Solomon, and N. F. Mott, Explanation of the Large Spin-Dependent Recombination Effect in Semiconductors.,, J Phys Lett, vol. 39, no. 4, (1978).

DOI: 10.1051/jphyslet:0197800390405100

Google Scholar

[15] T. D. Nguyen et al., Isotope effect in spin response of π-conjugated polymer films and devices,, Nat. Mater., vol. 9, no. 4, p.345–352, (2010).

Google Scholar

[16] P. M. Lenahan, Atomic scale defects involved in MOS reliability problems,, Microelectron. Eng., vol. 69, no. 2–4, p.173–181, (2003).

DOI: 10.1016/s0167-9317(03)00294-6

Google Scholar

[17] A. J. Lelis, R. Green, D. B. Habersat, and M. El, Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs,, IEEE Trans. Electron Devices, vol. 62, no. 2, p.316–323, (2015).

DOI: 10.1109/ted.2014.2356172

Google Scholar

[18] C. R. Timmel, F. Cintolesi, B. Brocklehurst, and P. J. Hore, Model calculations of magnetic field effects on the recombination reactions of radicals with anisotropic hyperfine interactions,, Chemical Physics Letters, vol. 334, no. 4–6. p.387–395, (2001).

DOI: 10.1016/s0009-2614(00)01436-6

Google Scholar

[19] G. Breit and I. Rabi, Measurement of nuclear spin,, Phys. Rev., vol. 38, no. 11, pp.2082-2083, (1931).

DOI: 10.1103/physrev.38.2082.2

Google Scholar