[1]
H. Kurimoto, K. Shibata, C. Kimura, H. Aoki, and T. Sugino, Thermal oxidation temperature dependence of 4H-SiC MOS interface,, Applied Surface Science, vol. 253, no. 5, pp.2416-2420, (2006).
DOI: 10.1016/j.apsusc.2006.04.054
Google Scholar
[2]
H. Naik and T. P. Chow, 4H-SiC MOS capacitors and MOSFET fabrication with gate oxidation at 1400 C,, in Materials Science Forum, 2014, vol. 778: Trans Tech Publ, pp.607-610.
DOI: 10.4028/www.scientific.net/msf.778-780.607
Google Scholar
[3]
A. O'Neill, F. Arith, J. Urresti, K. Vasilevskiy, N. Wright, and S. Olsen, High Mobility 4H-SiC MOSFET,, in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2018: IEEE, pp.1-4.
DOI: 10.1109/icsict.2018.8564911
Google Scholar
[4]
S. Hino, T. Hatayama, J. Kato, E. Tokumitsu, N. Miura, and T. Oomori, High channel mobility 4 H-Si C metal-oxide-semiconductor field-effect transistor with low temperature metal-organic chemical-vapor deposition grown Al 2 O 3 gate insulator,, Applied Physics Letters, vol. 92, no. 18, p.183503, (2008).
DOI: 10.1063/1.2903103
Google Scholar
[5]
S. S. Suvanam et al., Improved interface and electrical properties of atomic layer deposited Al2O3/4H-SiC,, Applied Surface Science, vol. 433, pp.108-115, (2018).
DOI: 10.1016/j.apsusc.2017.10.006
Google Scholar
[6]
X. Yang, B. Lee, and V. Misra, Electrical Characteristics of SiO 2 Deposited by Atomic Layer Deposition on 4H–SiC After Nitrous Oxide Anneal,, IEEE Transactions on Electron Devices, vol. 63, no. 7, pp.2826-2830, (2016).
DOI: 10.1109/ted.2016.2565665
Google Scholar
[7]
M. S. Kang, B. M. Lee, and V. Misra, Improved Threshold Voltage Instability in 4H-SiC MOSFETs with Atomic Layer Deposited SiO2,, in Materials Science Forum, 2018, vol. 924: Trans Tech Publ, pp.498-501.
DOI: 10.4028/www.scientific.net/msf.924.498
Google Scholar
[8]
S. Lee et al., Densification of silicon dioxide formed by plasma-enhanced atomic layer deposition on 4H-silicon carbide using argon post-deposition annealing,, Ceramics International, vol. 44, no. 12, pp.13565-13571, (2018).
DOI: 10.1016/j.ceramint.2018.04.190
Google Scholar
[9]
M. I. Idris, N. G. Wright, and A. B. Horsfall, Effect of Post Oxide Annealing on the Electrical and Interface 4H-SiC/Al2O3 MOS Capacitors,, in Materials Science Forum, 2018, vol. 924: Trans Tech Publ, pp.486-489.
DOI: 10.4028/www.scientific.net/msf.924.486
Google Scholar
[10]
H. Rong et al., High temperature nitridation of 4H-SiC MOSFETs,, in Materials Science Forum, 2016, vol. 858: Trans Tech Publ, pp.623-626.
DOI: 10.4028/www.scientific.net/msf.858.623
Google Scholar
[11]
T. Xiao-Yan et al., Investigation of a 4H—SiC metal—insulation—semiconductor structure with an Al2O3/SiO2 stacked dielectric,, Chinese Physics B, vol. 21, no. 8, p.087701, (2012).
DOI: 10.1088/1674-1056/21/8/087701
Google Scholar
[12]
M. Usman, S. S. Suvanam, M. Linnarsson, and A. J. M. S. i. S. P. Hallén, Improving the quality of Al 2 O 3/4H-SiC interface for device applications,, in Materials Science in Semiconductor Processing, vol. 81, pp.118-121, (2018).
DOI: 10.1016/j.mssp.2018.02.036
Google Scholar
[13]
Y. Lei et al., Improvement of SiO2/4H-SiC Interface properties by post-metallization annealing,, Microelectronics Reliability, vol. 84, pp.226-229, (2018).
DOI: 10.1016/j.microrel.2018.03.036
Google Scholar
[14]
E. Schilirò, R. Lo Nigro, P. Fiorenza, and F. Roccaforte, Negative charge trapping effects in Al2O3 films grown by atomic layer deposition onto thermally oxidized 4H-SiC,, AIP Advances, vol. 6, no. 7, p.075021, (2016).
DOI: 10.1063/1.4960213
Google Scholar
[15]
C. M. Tanner, Y.-C. Perng, C. Frewin, S. E. Saddow, and J. P. Chang, Electrical performance of Al 2 O 3 gate dielectric films deposited by atomic layer deposition on 4 H-Si C,, Applied Physics Letters, vol. 91, no. 20, p.203510, (2007).
DOI: 10.1063/1.2805742
Google Scholar
[16]
S. Wirths et al., Improved SiO2/4H-SiC Interface Defect Density Using Forming Gas Annealing,, in Materials Science Forum, 2019, vol. 963: Trans Tech Publ, pp.465-468.
DOI: 10.4028/www.scientific.net/msf.963.465
Google Scholar