Development of High-Quality Gate Oxide on 4H-SiC Using Atomic Layer Deposition

Article Preview

Abstract:

A systematic post-deposition annealing study on Silicon Carbide (SiC) metal-oxide-semiconductor capacitors (MOSCAPs) using atomic layer deposition (ALD)-deposited silicon dioxide (SiO2) layers was carried out. Anneals were done in oxidising (N2O), inert (Ar) and reducing (H2:N2) ambients at elevated temperatures from 900°C to 1300°C for 1 hour. Electrical characterisation results show that the forming gas treatment at 1100°C reduces the flatband voltage to 0.23 V from 10 V for as-deposited SiO2 layers. The density of interface traps (DIT) was also reduced by one order of magnitude to 2×1011 cm-2 eV-1 at EC-ET = 0.2 eV. As an indicator of the improvement, characterisation by x-ray photoelectron spectroscopy (XPS) showed that silicon enrichment present in as-deposited layers was largely reduced by the forming gas anneal, improving the stoichiometry. Time-dependent dielectric breakdown (TDDB) results showed that the majority of forming gas annealed samples broke down at breakdown fields of 12.5 MV × cm-1, which is about 2.5 MV × cm-1 higher than for thermally oxidised samples.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

547-553

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kurimoto, K. Shibata, C. Kimura, H. Aoki, and T. Sugino, Thermal oxidation temperature dependence of 4H-SiC MOS interface,, Applied Surface Science, vol. 253, no. 5, pp.2416-2420, (2006).

DOI: 10.1016/j.apsusc.2006.04.054

Google Scholar

[2] H. Naik and T. P. Chow, 4H-SiC MOS capacitors and MOSFET fabrication with gate oxidation at 1400 C,, in Materials Science Forum, 2014, vol. 778: Trans Tech Publ, pp.607-610.

DOI: 10.4028/www.scientific.net/msf.778-780.607

Google Scholar

[3] A. O'Neill, F. Arith, J. Urresti, K. Vasilevskiy, N. Wright, and S. Olsen, High Mobility 4H-SiC MOSFET,, in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2018: IEEE, pp.1-4.

DOI: 10.1109/icsict.2018.8564911

Google Scholar

[4] S. Hino, T. Hatayama, J. Kato, E. Tokumitsu, N. Miura, and T. Oomori, High channel mobility 4 H-Si C metal-oxide-semiconductor field-effect transistor with low temperature metal-organic chemical-vapor deposition grown Al 2 O 3 gate insulator,, Applied Physics Letters, vol. 92, no. 18, p.183503, (2008).

DOI: 10.1063/1.2903103

Google Scholar

[5] S. S. Suvanam et al., Improved interface and electrical properties of atomic layer deposited Al2O3/4H-SiC,, Applied Surface Science, vol. 433, pp.108-115, (2018).

DOI: 10.1016/j.apsusc.2017.10.006

Google Scholar

[6] X. Yang, B. Lee, and V. Misra, Electrical Characteristics of SiO 2 Deposited by Atomic Layer Deposition on 4H–SiC After Nitrous Oxide Anneal,, IEEE Transactions on Electron Devices, vol. 63, no. 7, pp.2826-2830, (2016).

DOI: 10.1109/ted.2016.2565665

Google Scholar

[7] M. S. Kang, B. M. Lee, and V. Misra, Improved Threshold Voltage Instability in 4H-SiC MOSFETs with Atomic Layer Deposited SiO2,, in Materials Science Forum, 2018, vol. 924: Trans Tech Publ, pp.498-501.

DOI: 10.4028/www.scientific.net/msf.924.498

Google Scholar

[8] S. Lee et al., Densification of silicon dioxide formed by plasma-enhanced atomic layer deposition on 4H-silicon carbide using argon post-deposition annealing,, Ceramics International, vol. 44, no. 12, pp.13565-13571, (2018).

DOI: 10.1016/j.ceramint.2018.04.190

Google Scholar

[9] M. I. Idris, N. G. Wright, and A. B. Horsfall, Effect of Post Oxide Annealing on the Electrical and Interface 4H-SiC/Al2O3 MOS Capacitors,, in Materials Science Forum, 2018, vol. 924: Trans Tech Publ, pp.486-489.

DOI: 10.4028/www.scientific.net/msf.924.486

Google Scholar

[10] H. Rong et al., High temperature nitridation of 4H-SiC MOSFETs,, in Materials Science Forum, 2016, vol. 858: Trans Tech Publ, pp.623-626.

DOI: 10.4028/www.scientific.net/msf.858.623

Google Scholar

[11] T. Xiao-Yan et al., Investigation of a 4H—SiC metal—insulation—semiconductor structure with an Al2O3/SiO2 stacked dielectric,, Chinese Physics B, vol. 21, no. 8, p.087701, (2012).

DOI: 10.1088/1674-1056/21/8/087701

Google Scholar

[12] M. Usman, S. S. Suvanam, M. Linnarsson, and A. J. M. S. i. S. P. Hallén, Improving the quality of Al 2 O 3/4H-SiC interface for device applications,, in Materials Science in Semiconductor Processing, vol. 81, pp.118-121, (2018).

DOI: 10.1016/j.mssp.2018.02.036

Google Scholar

[13] Y. Lei et al., Improvement of SiO2/4H-SiC Interface properties by post-metallization annealing,, Microelectronics Reliability, vol. 84, pp.226-229, (2018).

DOI: 10.1016/j.microrel.2018.03.036

Google Scholar

[14] E. Schilirò, R. Lo Nigro, P. Fiorenza, and F. Roccaforte, Negative charge trapping effects in Al2O3 films grown by atomic layer deposition onto thermally oxidized 4H-SiC,, AIP Advances, vol. 6, no. 7, p.075021, (2016).

DOI: 10.1063/1.4960213

Google Scholar

[15] C. M. Tanner, Y.-C. Perng, C. Frewin, S. E. Saddow, and J. P. Chang, Electrical performance of Al 2 O 3 gate dielectric films deposited by atomic layer deposition on 4 H-Si C,, Applied Physics Letters, vol. 91, no. 20, p.203510, (2007).

DOI: 10.1063/1.2805742

Google Scholar

[16] S. Wirths et al., Improved SiO2/4H-SiC Interface Defect Density Using Forming Gas Annealing,, in Materials Science Forum, 2019, vol. 963: Trans Tech Publ, pp.465-468.

DOI: 10.4028/www.scientific.net/msf.963.465

Google Scholar