Surface Treatment of 4H-SiC MOSFETs Prior to Al2O3 Deposition

Article Preview

Abstract:

The effect of surface treatments prior to the deposition of Al2O3 is performed on 4H-SiC MOS capacitors and MOSFETs. 40 nm of Al2O3 were deposited on 4H-SiC using atomic layer deposition (ALD) as a gate dielectric. Different surface treatments were used to investigate the capacitance-voltage and current-voltage characteristics on MOS capacitors and MOSFETs respectively, including the important parameters such as interface state density, flat band voltage, threshold voltage and field-effect mobility. Forming gas annealing and rapid oxidation processes were found to be effective in reducing the interface state density and results in high field-effect mobility with peak field-effect mobility of 130 cm2Vs-1. The experimental results obtained manifest that the surface treatment prior to Al2O3 deposition is critical to producing high performance of 4H-SiC MOSFETs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

541-546

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Jiao, et al., J. Appl. Phys., vol. 119, no. 15, p.155705, (2016).

Google Scholar

[2] Y. Nanen, et al., IEEE Trans. Electron Devices, vol. 60, no. 3, p.1260–1262, (2013).

Google Scholar

[3] G. Y. Chung, et al., IEEE Electron Device Lett., vol. 22, no. 4, p.176–178, (2001).

Google Scholar

[4] J. Yota, et al., J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 31, no. 1, p. 01A134, (2013).

Google Scholar

[5] D. J. Lichtenwalner, et al., Appl. Phys. Lett., vol. 95, no. 15, p.152113, (2009).

Google Scholar

[6] D. J. Lichtenwalner, et al., Mater. Sci. Forum, vol. 897, p.163–166, (2017).

Google Scholar

[7] H. N. Alshareef, et al., Appl. Phys. Lett., vol. 89, no. 23, p.1–4, (2006).

Google Scholar

[8] D. J. Lichtenwalner, et al., J. Appl. Phys., vol. 98, no. 2, p.024314, (2005).

Google Scholar

[9] S. Hino, et al., Mater. Sci. Forum, vol. 600–603, p.683–686, (2008).

Google Scholar

[10] D. J. Lichtenwalner, et al., Int. Semicond. Device Res. Symp. ISDRS '09, p.3–4, (2009).

Google Scholar

[11] S. Hino, et al., Appl. Phys. Lett., vol. 92, no. 18, p.183503, (2008).

Google Scholar

[12] T. Hatayama, et al., IEEE Trans. Electron Devices, vol. 55, no. 8, p.2041–2045, (2008).

Google Scholar

[13] M. I. Idris, et al., Mater. Sci. Forum, vol. 924, p.486–489, (2018).

Google Scholar

[14] M. I. Idris, et al., Mater. Sci. Forum, vol. 924, p.490–493, (2018).

Google Scholar

[15] M. I. Idris, et al., J. Appl. Phys., vol. 120, no. 21, p.214902, (2016).

Google Scholar

[16] H. Yoshioka, et al., J. Appl. Phys., vol. 111, no. 1, p.014502, (2012).

Google Scholar

[17] G. Liu, et al., Appl. Surf. Sci., vol. 324, p.30–34, (2015).

Google Scholar

[18] K. Fukuda, et al., Appl. Phys. Lett., vol. 76, no. 12, p.1585–1587, (2000).

Google Scholar