Reliability Study of MOS Capacitors Fabricated on 3C-SiC/Si Substrates

Article Preview

Abstract:

3C-SiC technology has advanced a lot in the last decade and the interests in making 3C-SiC power devices are growing again, in research and industry. Despite of that, there has been a lack of knowledge on the reliability of the 3C-SiC MOS structure. In this paper, we investigated the MOS capacitors fabricated on 3C-SiC/Si substrates at room temperature. From the simple I-V characterisation, an effective barrier height as high as 3.65-3.71 eV can be extracted for the fabricated 3C-SiC/SiO2 interface. Reliability test under elevated gate bias which lasts weeks demonstrates an acceptable failure rate (3450 PPM) for these state-of-the-art 3C-SiC MOS capacitors. The failure mechanism study suggests the intrinsic region is still not reached and there is still much room to improve the reliability. Minimising some obvious extrinsic defects which lead to early breakdown alone can reduce the failure rate by 100 times.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

659-664

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. K. Sharma, A. C. Ahyi, T. Isaacs-Smith, A. Modic, M. Park, Y. Xu, E. L. Garfunkel, S. Dhar, L. C. Feldman, and J. R. Williams, High-mobility stable 4H-SiC MOSFETs using a thin PSG interfacial passivation layer,, IEEE Electron Device Lett., 34 (2013) 175-177.

DOI: 10.1109/led.2012.2232900

Google Scholar

[2] Epitaxial SiC Films Grown on 300mm Si Wafers., PR Newswire. http://www.prnewswire.com/news-releases/epitaxial-sic-films-grown-on-300mm-si-wafers-209304461.html (accessed 19th Sep, 2019).

Google Scholar

[3] N. Hatta, T. Kawahara, K. Yagi, H. Nagasawa, S. A. Reshanov, and A. Schöner, Reliable method for eliminating stacking fault on 3C-SiC (001),, Mater. Sci. Forum, 717 (2012) 173-176.

DOI: 10.4028/www.scientific.net/msf.717-720.173

Google Scholar

[4] L. A. Lipkin and J. W. Palmour, Insulator investigation on SiC for improved reliability,, IEEE Trans. Electron Devices, 46 (1999) 525-532.

DOI: 10.1109/16.748872

Google Scholar

[5] K. Matocha and R. Beaupre, Time-dependent dielectric breakdown of thermal oxides on 4H-SiC,, Mater. Sci. Forum, 556-557 (2007) 675-678.

DOI: 10.4028/www.scientific.net/msf.556-557.675

Google Scholar

[6] R. Singh and A. R. Hefner, Reliability of SiC MOS devices,, Solid-State Electronics, 48 (2004) 1717-1720.

DOI: 10.1016/j.sse.2004.05.005

Google Scholar

[7] J. Lutz, H. Schlangenotto, U. Scheuermann, and R. De Doncker, Reliability and Reliability Testing,, in Semiconductor Power Devices: Physics, Characteristics, Reliability, 2nd ed., Springer International Publishing AG, pp.489-581, (2018).

DOI: 10.1007/978-3-319-70917-8_12

Google Scholar

[8] F. Li, Y. K. Sharma, V. Shah, M. R. Jennings, A. Perez-Tomas, M. Myronov, C. A. Fisher, D. Leadley, and P. A. Mawby, Electrical activation of nitrogen heavily implanted 3C-SiC(100),, Applied Surface Science, 353 (2015) 958-963.

DOI: 10.1016/j.apsusc.2015.06.169

Google Scholar

[9] F. Li, Y. Sharma, D. Walker, S. Hindmarsh, M. R. Jennings, D. Martin, C. A. Fisher, P. M. Gammon, A. Perez-Tomas, and P. A. Mawby, 3C-SiC transistor with ohmic contacts defined at room temperature,, IEEE Electron Device Letters, 37 (2016) 1189-1192.

DOI: 10.1109/led.2016.2593771

Google Scholar

[10] K. Matocha, G. Dunne, S. Soloviev, and R. Beaupre, Time-dependent dielectric breakdown of 4H-SiC MOS capacitors and DMOSFETs,, IEEE Trans. Electron Devices, 55 (2008) 1830-1834.

DOI: 10.1109/ted.2008.926595

Google Scholar

[11] L. C. Yu, G. T. Dunne, K. S. Matocha, K. P. Cheung, J. S. Suehle, and K. Sheng, Reliability issues of SiC MOSFETs: a technology for high-temperature environments,, IEEE Trans. Device and Materials Reliability, 10 (2010) 418-426.

DOI: 10.1109/tdmr.2010.2077295

Google Scholar

[12] M. Gurfinkel, J. C. Horst, J. S. Suehle, J. B. Bernstein, Y. Shapira, K. S. Matocha, G. Dunne, and R. A. Beaupre, Time-dependent dielectric breakdown of 4H-SiC/SiO2 MOS capacitors,, IEEE Trans. Device and Materials Reliability, 8 (2008) 635-641.

DOI: 10.1109/tdmr.2008.2001182

Google Scholar

[13] A. Xiang, X. Xu, L. Zhang, Z. Li, J. Li, and G. Dai, Origin of temperature dependent conduction of current from n-4H-SiC into silicon dioxide films at high electric fields,, Applied Physics Letters, 112 (2018) 062101.

DOI: 10.1063/1.5006249

Google Scholar

[14] P. Fiorenza, A. Frazzetto, A. Guarnera, M. Saggio, and F. Roccaforte, Fowler-Nordheim tunneling at SiO2/4H-SiC interfaces in metal-oxide-semiconductor field effect transistors,, Applied Physics Letters, 105 (2014) 142108.

DOI: 10.1063/1.4898009

Google Scholar

[15] P. Samanta and K. C. Mandal, Leakage current conduction, hole injection, and time-dependent dielectric breakdown of n-4H-SiC MOS capacitors during positive bias temperature stress,, Journal of Applied Physics, 121 (2017) 034501.

DOI: 10.1063/1.4973674

Google Scholar

[16] T. Watanabe, S. Hino, T. Iwamatsu, S. Tomohisa, and S. Yamakawa, Mechanism of depletion-mode TDDB for 4H-SiC MOS structure,, IEEE Trans. on Device and Materials Reliability, 17 (2017) 163-169.

DOI: 10.1109/tdmr.2016.2635160

Google Scholar

[17] M. Lenzlinger and E. H. Snow, Fowler‐Nordheim tunneling into thermally grown SiO2,, Journal of Applied Physics, 40 (1969) 278-283.

DOI: 10.1063/1.1657043

Google Scholar

[18] M. Beier-Moebius and J. Lutz, Breakdown of gate oxide of 1.2 kV SiC-MOSFETs under high temperature and high gate voltage,, presented in PCIM Europe (2016).

Google Scholar