The Preliminary Study of the Addition Zinc in Tin-Copper Lead Free Solder

Article Preview

Abstract:

Sn-0.7Cu lead free solder has become an alternative material to replace Sn-Pb solder. However, it has the weakness of high melting point and poor corrosion behavior. Through the study, Sn-0.7-xZn microstructure and phase changes were studied through scanning electron microscope (SEM) and X-ray diffraction (XRD). SEM result shows microstructure Cu6Sn5 is precipitated with rod like shape while CuZn is shown in bump oval shape whereas compounds that presented are Cu6Sn5 and Cu5Zn8 as shown in the XRD analysis result.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

104-108

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. F. M. Nazeri, M. N. Masri, and A. A. Mohamad, Post-Corrosion Mechanical Analysis of Sn-Zn Alloys: A Short Review, IOP Conference Series: Materials Science and Engineering, 701 (2019) p.012049.

DOI: 10.1088/1757-899x/701/1/012049

Google Scholar

[2] M. F. M. Nazeri, M. Z. Yahaya, A. Gursel, F. Cheani, M. N. Masri, and A. A. Mohamad, Corrosion characterization of Sn-Zn solder: a review, Soldering & Surface Mount Technology, (2019).

DOI: 10.1108/ssmt-05-2018-0013

Google Scholar

[3] M. Zamri, S. N. Athirah, M. A. Sulaiman, S. Ismail, and M. N. Masri, Bacto-Agar and commercial agar as binder for porous zinc anode, Solid State Phenomena, 264 (2017) pp.136-139.

DOI: 10.4028/www.scientific.net/ssp.264.136

Google Scholar

[4] A. Zahid, M. Masri, M. Hussin, and M. A. Bakar, The preliminary study on cassava (Manihot Esculenta) as gel polymer electrolyte for zinc-air battery, AIP Conference Proceedings, 2030 (2018) p.020278.

DOI: 10.1063/1.5066919

Google Scholar

[5] M. Abtew and G. Selvaduray, Lead-free solders in microelectronics, Materials Science and Engineering: R: Reports, 27, 5-6 (2000) pp.95-141.

DOI: 10.1016/s0927-796x(00)00010-3

Google Scholar

[6] S. Jayesh and J. Elias, Experimental Investigations on Impact Toughness and Shear Strength of Lead Free Solder Alloy Sn–0.5 Cu–3Bi–xAg, Transactions on Electrical and Electronic Materials, (2020) pp.1-7.

DOI: 10.1007/s42341-019-00167-x

Google Scholar

[7] A. M. Delhaise et al., Thermal Preconditioning and Restoration of Bismuth-Containing, Lead-Free Solder Alloys, Journal of Electronic Materials, 49, (2020) pp.116-127.

DOI: 10.1007/s11664-019-07666-w

Google Scholar

[8] D. Frear, J. Jang, J. Lin, and C. Zhang, Pb-free solders for flip-chip interconnects, Jom, 53, 6 (2001) pp.28-33.

DOI: 10.1007/s11837-001-0099-3

Google Scholar

[9] C. M. Miller, I. E. Anderson, and J. F. Smith, A viable tin-lead solder substitute: Sn-Ag-Cu, Journal of electronic materials, 23, 7 (1994) pp.595-601.

DOI: 10.1007/bf02653344

Google Scholar

[10] Z. Xia, Z. Chen, Y. Shi, N. Mu, and N. Sun, Effect of rare earth element additions on the microstructure and mechanical properties of tin-silver-bismuth solder, Journal of electronic materials, 31 (2002) pp.564-567.

DOI: 10.1007/s11664-002-0126-3

Google Scholar

[11] A. K. Gain and L. Zhang, Microstructure, mechanical and electrical performances of zirconia nanoparticles-doped tin-silver-copper solder alloys, Journal of Materials Science: Materials in Electronics, 27 (2016) pp.7524-7533.

DOI: 10.1007/s10854-016-4732-x

Google Scholar

[12] S. Jayesh and J. Elias, Experimental Investigation on the Effect of Ag Addition on Ternary Lead Free Solder Alloy–Sn–0.5 Cu–3Bi, Metals and Materials International, 26 (2020) pp.107-114.

DOI: 10.1007/s12540-019-00305-3

Google Scholar

[13] G. Zeng et al., The influence of Ni and Zn additions on microstructure and phase transformations in Sn–0.7 Cu/Cu solder joints, Acta Materialia, 83 (2015) pp.357-371.

DOI: 10.1016/j.actamat.2014.10.003

Google Scholar

[14] Y. Min, L. Xiuzhong, L. Xinghong, and D. Jiahui, Development of Sn-Zn-Cu lead free solder, 11th International Conference on Electronic Packaging Technology & High Density Packaging, (2010) pp.784-788.

DOI: 10.1109/icept.2010.5582695

Google Scholar

[15] C. Yu, H. Lu, and S. Li, Effect of Zn addition on the formation and growth of intermetallic compound at Sn–3.5 wt% Ag/Cu interface, Journal of alloys and compounds, 460 (2008) pp.594-598.

DOI: 10.1016/j.jallcom.2007.06.031

Google Scholar