Enhancement of Electrical Conductivity of Electrospun Polyacrylonitrile Fibres Using Carbon Nanomaterials Synthesised from Polypropylene Waste

Article Preview

Abstract:

Incorporation of carbon nanomaterials (CNMs) into polymer such as Polyacrylonitrile (PAN) fibres allow electric current to pass through easily. Therefore in this study, bulk quantities of CNMs are synthesised using Chemical Vapor Deposition (CVD) method by manipulating the reaction time and catalyst ratio. Polypropylene wastes are used as the carbon precursor and ferrocene as metal catalyst in the CVD experiment. Addition of 1 wt% synthesised-CNMs into electrospun PAN fibres successfully increased the electrical conductivity by 50%. Addition of CNMs improved the crystallinity of electrospun-PAN/CNMs fibres as proven by XRD analysis. Electrospun PAN/CNMs-A fibres show larger diameter than the diameter of electrospun PAN/CNMs-B. Large bead formations contained densely-packed CNMs-A within the structure of electrospun PAN/CNMs-A fibres hindered their effectiveness to conduct the electricity. On the contrary, PAN/CNMs-B shows remarkable improvement in electrical conductivity when loosely-packed CNMs-B are added to the PAN fibres.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

111-117

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Kamran, Y.-J. Heo, J. W. Lee, and S.-J. Park, Functionalized Carbon Materials for Electronic Devices: A Review,, Micromachines, vol. 10, no. 4, p.234, (2019).

DOI: 10.3390/mi10040234

Google Scholar

[2] M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, A review of heat treatment on polyacrylonitrile fiber,, Polym. Degrad. Stab., vol. 92, no. 8, p.1421–1432, (2007).

DOI: 10.1016/j.polymdegradstab.2007.03.023

Google Scholar

[3] X. W. Minoo Naebe, Tong Lin, Carbon Nanotubes Reinforced Electrospun Polymer Nanofibres,, Nanofibers, no. February, p.135–152, (2010).

DOI: 10.5772/8160

Google Scholar

[4] N. Mishra et al., Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes,, J Anal. Appl. Pyrolysis, vol. 94, p.91–98, (2012).

Google Scholar

[5] G. S. Bajad, R. P. Vijayakumar, A. G. Gupta, V. Jagtap, and Y. pal Singh, Production of liquid hydrocarbons, carbon nanotubes and hydrogen rich gases from waste plastic in a multi-core reactor,, J. Anal. Appl. Pyrolysis, vol. 125, no. September, p.83–90, (2017).

DOI: 10.1016/j.jaap.2017.04.016

Google Scholar

[6] Y. T. Lee, J. Park, Y. S. Choi, H. Ryu, and H. J. Lee, Temperature-dependent growth of vertically aligned carbon nanotubes in the range 800-1100 ??C,, J. Phys. Chem. B, vol. 106, no. 100, p.7614–7618, (2002).

DOI: 10.1021/jp020488l

Google Scholar

[7] Praswasti and Nur Safitrah, The Effect of Mass Ratio of Ferrocene to Camphor as Carbon Source and Reaction Time on the Growth of Carbon Nanotubes,, vol. 3037, p.2–7, (2018).

Google Scholar

[8] S. Abdullah, M. R. Mahmood, M. S. Shamsudin, S. A. Bakar, and N. A. Asli, Effect of the ratio of catalyst to carbon source on the growth of vertically aligned carbon nanotubes on nanostructured porous silicon templates,, Int. J. Ind. Chem., vol. 4, no. 1, p.23, (2013).

DOI: 10.1186/2228-5547-4-23

Google Scholar

[9] M. O. Daramola, P. Hlanyane, O. O. Sadare, O. O. Oluwasina, and S. E. Iyuke, Performance of carbon nanotube/polysulfone (CNT/Psf) composite membranes during Oil–water mixture separation: Effect of CNT dispersion method,, Membranes (Basel)., vol. 7, no. 1, p.1–15, (2017).

DOI: 10.3390/membranes7010014

Google Scholar

[10] F. Pourfayaz, S. Boroun, J. Babaei, and B. E. Hoseinzadeh, An Evaluation of the Adsorption Potential of MWCNTs for Benzene and Toluene Removal,, vol. 10, no. 1, p.27–34, (2014).

Google Scholar

[11] F. Pourfayaz, A. A. Khodadadi, Y. Mortazavi, and S. H. Jafari, Plasma functionalization of MWCNTs in he followed by NH3 treatment and its application in PMMA based nanocomposites,, Plasma Process. Polym., vol. 7, no. 12, p.1001–1009, (2010).

DOI: 10.1002/ppap.201000055

Google Scholar

[12] N. Saifuddin, A. Z. Raziah, and A. R. Junizah, Carbon nanotubes: A review on structure and their interaction with proteins,, J. Chem., vol. 2013, (2013).

DOI: 10.1155/2013/676815

Google Scholar

[13] Q. Ni, H. Xia, X. Jin, and F. Liu, Electrospun Nanofibers for Energy and Environmental Applications,, (2014).

Google Scholar

[14] N. K. and N. Ucar, Electrospinning Functional Polyacrylonitrile Nanofibers with Polyaniline, Carbon Nanotubes, and Silver Nitrate as Additives,, no. July 2017, (2016).

DOI: 10.5772/65472

Google Scholar

[15] F. O. Agyemang, G. M. Tomboc, S. Kwofie, and H. Kim, Electrospun carbon nanofiber-carbon nanotubes coated polyaniline composites with improved electrochemical properties for supercapacitors,, Electrochim. Acta, vol. 259, no. January 2018, p.1110–1119, (2018).

DOI: 10.1016/j.electacta.2017.12.079

Google Scholar

[16] V. O. Nyamori and N. J. Coville, Effect of ferrocene/carbon ratio on the size and shape of carbon nanotubes and microspheres,, Organometallics, vol. 26, no. 16, p.4083–4085, (2007).

DOI: 10.1021/om7003628

Google Scholar

[17] M. K. Pilehrood, P. Heikkilä, and A. Harlin, Preparation of carbon nanotube embedded in polyacrylonitrile (PAN) nanofibre composites by electrospinning process,, Autex Res. J., vol. 12, no. 1, p.1–6, (2012).

DOI: 10.2478/v10304-012-0001-0

Google Scholar

[18] M. K. Sinha, B. R. Das, A. Srivastava, and A. K. Saxena, Study of Electrospun Poly\acrylonitrile (PAN) and PAN/CNT Composite Nanofibrous Webs,, Res. J. Text. Appar., vol. 19, no. 1, p.36–45, (2015).

DOI: 10.1108/rjta-19-01-2015-b004

Google Scholar

[19] S. Almuhamed, N. Khenoussi, L. Schacher, D. Adolphe, and H. Balard, Measuring of electrical properties of MWNT-reinforced PAN nanocomposites,, J. Nanomater., vol. 2012, no. June, (2012).

DOI: 10.1155/2012/750698

Google Scholar