Thermal and Magnetic Properties of Ternary Fe-B-C and Quaternary Fe-B-C-Si Alloys with High Glass-Forming Ability and High Magnetization

Article Preview

Abstract:

The thermal and magnetic properties of the ternary Fe-B-C and quaternary Fe-B-C-Si amorphous alloys have been investigated. It has been discovered that the ternary Fe-B-C amorphous alloys with compositions close to Fe79.3B14.3C6.4 exhibit a glass transition prior to crystallization on heating. The alloys also have high mass magnetization of 176–178 A m2/kg at room temperature. In addition, the glass-forming ability (GFA) of the alloys is significantly enhanced by the addition of 4 at% Si while maintaining high magnetization of approximately 170 A m2/kg at room temperature. In was found that the Fe23(B, C)6 phase (Cr23C6-type) is formed during crystallization of the quaternary Fe-B-C-Si alloys with the large GFA. It was also confirmed that the amorphous powders of Fe-Cr-B-C-Si alloys could be produced by a conventional water atomization method and exhibit the low core losses of 305–362 kW/m3 at 100 kHz and 100 mT. The quaternary Fe-B-C-Si amorphous alloys with high GFA, high magnetization and low core losses are suitable for a core material of various magnetic components.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

274-279

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Egami, Magnetic amorphous alloys: physics and technological applications, Rep. Prog. Phys. 47 (1984) 1601-1725.

DOI: 10.1088/0034-4885/47/12/002

Google Scholar

[2] S. Hatta, T. Egami and C. D. Graham Jr, Fe-B-C amorphous alloys with room-temperature saturation induction over 17.5 kG, Appl. Phys. Lett. 34 (1979) 113-115.

DOI: 10.1063/1.90601

Google Scholar

[3] M. Mitera, T. Masumoto and N. S. Kazama, Effect of silicon addition on the magnetic properties of Fe-B-C amorphous alloys, J. Appl. Phys. 50 (1979) 7609-7611.

DOI: 10.1063/1.326860

Google Scholar

[4] F. E. Luborsky, J. J. Becker, J. L. Walter and D. L. Martin, The Fe-B-C ternary amorphous alloys, IEEE Trans. Magn. MAG-16 (1980) 521-525.

DOI: 10.1109/tmag.1980.1060638

Google Scholar

[5] M. Hagiwara, A. Inoue and T. Masumoto, The critical thickness for the formation of Fe-, Ni- and Co-based amorphous alloys with metalloids, Sci. Rep. Res. Inst. Tohoku Univ. A 29 (1981) 351-358.

Google Scholar

[6] T. Hibino and T. Bitoh, Ternary Fe-B-C and quaternary Fe-B-C-Si amorphous alloys with glass transition and high magnetization, J. Alloys Comp. 707 (2017) 82-86.

DOI: 10.1016/j.jallcom.2016.12.060

Google Scholar

[7] T. Bitoh, T. Hibino and H. Koshiba, Development of ternary Fe-B-C and quaternary Fe-B-C-Si amorphous alloys with high glass-forming ability and high magnetization, J. Jpn Soc. Powder Powder Metall. 65 (2018) 389-394.

DOI: 10.2497/jjspm.65.389

Google Scholar

[8] S. H. Ge, M. X. Mao, G. L. Chen, Z. H. Chen, C. L. Zhang, Y. D. Zhang, W. A. Hines and J. I. Budnick, Effect of short-range order on the magnetic properties of Fe-B-C amorphous alloys: NMR and magnetization measurements, Phys. Rev. B 45 (1992) 4695-4699.

DOI: 10.1103/physrevb.45.4695

Google Scholar

[9] M. X. Mao, S. H. Ge, Z. H. Chen, G. L. Chen, C. L. Zhang, Y. D. Zhang, W. A. Hines and J. I. Budnick, Development of short-range order in Fe-B-C amorphous alloys with thermal treatment: an NMR study, J. Magn. Magn. Mater. 138 (1994) 301-306.

DOI: 10.1016/0304-8853(94)90051-5

Google Scholar

[10] Metglas Inc, Alloy Brochure for 2605HB1M & 2605SA1, https://metglas.com/wp-content/uploads/2016/12/Amorphous-Alloys-for-Transformer-Cores-.pdf.

Google Scholar

[11] M. Imafuku, K. Yaoita, S. Sato, W. Zhang and A. Inoue, Effect on lanthanide element on glass-forming ability and local atomic structure of Fe-Co-(Ln)-B amorphous alloys, Mater. Trans., JIM 40 (1999) 1144-1148.

DOI: 10.2320/matertrans1989.40.1144

Google Scholar

[12] T. Nakamura, E. Matsubara, M. Imafuku, H. Koshiba, A. Inoue and Y. Waseda, Structural study of amorphous Fe70M10B20 (M = Cr, W, Nb, Zr and Hf) alloys by x-ray diffraction, Mater. Trans. 42 (2001) 1530-1534.

DOI: 10.1016/s0921-5093(00)01903-1

Google Scholar

[13] T. Nakamura, H. Koshiba, M. Imafuku, A. Inoue and E. Matsubara, Determination of atomic sites of Nb dissolved in metastable Fe23B6 phase, Mater. Trans. 43 (2002) 1918-1920.

DOI: 10.2320/matertrans.43.1918

Google Scholar

[14] C. W. T. McLyman, Transformer and inductor design handbook, 4th ed., CRC Press, 2016, chapter 2, 19-26.

Google Scholar

[15] I. Otsuka, Y. Maeta, K. Ishiyama, M. Yagi, The characteristic of high magnetic flux density Fe-based amorphous soft magnetic powders and consolidated magnetic cores, J. Jpn. Soc. Powder Powder Metall. 56 (2009) 563-567 (in Japanese).

DOI: 10.2497/jjspm.56.563

Google Scholar

[16] I. Otsuka, T. Kadomura, K. Ishiyama and M. Yagi, Magnetic properties of Fe-based amorphous powder cores with high magnetic flux density, IEEE Trans. Magn. 45 (2009) 4294-4297.

DOI: 10.1109/tmag.2009.2021665

Google Scholar

[17] M. Yagi, H. Nakanishi, I. Otsuka, H. Yamamoto, H. Satake and A. Shintani, Magnetic properties of Fe-based amorphous powder cores produced by the cold-pressing method, J. Magn. Soc. Jpn. 26 (2002) 513-517 (in Japanese).

DOI: 10.3379/jmsjmag.26.513

Google Scholar

[18] D. H. Jang, K. Y. Kim, T. H. Noh, Magnetic properties of amorphous FeCrSiBC alloy powder cores using phosphate-coated powders, J. Magn. 11 (2006) 126-129.

DOI: 10.4283/jmag.2006.11.3.126

Google Scholar