[1]
C. Tudisco, F. Bertani, M.T. Cambria, F. Sinatra, E. Fantechi, C. Innocenti, C. Sangregorio, E. Dalcanale, G.G. Condorelli, Functionalization of PEGylated Fe3O4 magnetic nanoparticles with tetraphosphonate cavitand for biomedical application, Nanoscale. 5 (2013) 11438–11446.
DOI: 10.1039/c3nr02188b
Google Scholar
[2]
M.R. Ghazanfari, M. Kashefi, S.F. Shams, M.R. Jaafari, Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications, Biochemistry Research International. (2016).
DOI: 10.1155/2016/7840161
Google Scholar
[3]
Y. Shen, J. Tang, Z. Nie, Y. Wang, Y. Ren, L. Zuo, Preparation and Application of Magnetic Fe3O4 Nanoparticles for Wastewater Purification, Separation and Purification Technology. 68 (2009) 312–319.
DOI: 10.1016/j.seppur.2009.05.020
Google Scholar
[4]
Environmental Assessment of Large Scale Production of Magnetite (Fe3O4) Nanoparticles via Coprecipitation, (n.d.).
Google Scholar
[5]
Y.E. Gunanto, M.P. Izaak, E. Jobiliong, L. Cahyadi, W.A. Adi, High purity Fe3O4 from Local Iron Sand Extraction, J. Phys.: Conf. Ser. 1011 (2018) 012005.
DOI: 10.1088/1742-6596/1011/1/012005
Google Scholar
[6]
Extraction of Magnetite from Millscales Waste for Ultrafast Removal of Cadmium Ions, IJEAT. 9 (2019) 5902–5907.
Google Scholar
[7]
M.A. Legodi, D. de Waal, The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste, Dyes and Pigments. 74 (2007) 161–168.
DOI: 10.1016/j.dyepig.2006.01.038
Google Scholar
[8]
H. Chun, Y. Choi, A Study on the Mill Scale Pretreatment and Magnetite Production for Phosphate Adsorption, Journal of Korean Society of Environmental Engineers. 37 (2015) 246–252.
DOI: 10.4491/ksee.2015.37.4.246
Google Scholar
[9]
K.P. McKenna, F. Hofer, D. Gilks, V.K. Lazarov, C. Chen, Z. Wang, Y. Ikuhara, Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4, Nat Commun. 5 (2014) 5740.
DOI: 10.1038/ncomms6740
Google Scholar
[10]
X. Zhang, S. Yang, Z. Yang, X. Xu, Kinetics and intermediate phases in epitaxial growth of Fe3O4 films from deposition and thermal reduction, Journal of Applied Physics. 120 (2016) 085313.
DOI: 10.1063/1.4961607
Google Scholar
[11]
M. Alkan, M. Bugdayci, A. Turan, F. Demirci, O. Yucel, A Comparative Study on the Reduction of Mill Scale from Continuous Casting Processes, in: (2014).
DOI: 10.1002/9781118887998.ch62
Google Scholar
[12]
C. Fu, A. Mahadevegowda, P.S. Grant, Production of hollow and porous Fe2O3 from industrial mill scale and its potential for large-scale electrochemical energy storage applications, J. Mater. Chem. A. 4 (2016) 2597–2604.
DOI: 10.1039/c5ta09141a
Google Scholar
[13]
M. Quddus, M. Rahman, J. Khanam, B. Biswas, N. Sharmin, S. Ahmed, A. Neger, Synthesis and Characterization of Pigment Grade Red Iron Oxide from Mill Scale, International Research Journal of Pure and Applied Chemistry. 16 (2018) 1–9.
DOI: 10.9734/irjpac/2018/42935
Google Scholar
[14]
H. Chen, Z. Zheng, Z. Chen, X.T. Bi, Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study, Powder Technology. 316 (2017) 410–420.
DOI: 10.1016/j.powtec.2017.02.067
Google Scholar
[15]
E. Monazam, R. Breault, R. Siriwardane, Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion, Chemical Engineering Journal. 242 (2014) 204–210.
DOI: 10.1016/j.cej.2013.12.040
Google Scholar
[16]
S.-S. Jung, J.-S. Lee, In-Situ Kinetic Study of Hydrogen Reduction of Fe2O3 for the Production of Fe Nanopowder, Mater. Trans. 50 (2009) 2270–2276.
Google Scholar
[17]
H. Chen, Z. Zheng, Z. Chen, X. He, K. He, Multistep reduction kinetics of hematite (Fe2O3) to iron in a micro fluidized bed reactor by hydrogen at low temperatures, in: Flogen Star Outreach, 2016: p.222–237. http://www.flogen.org/sips2016/paper-6-50.html (accessed January 20, 2020).
Google Scholar
[18]
Z. Chen, J. Dang, X. Hu, H. Yan, Reduction Kinetics of Hematite Powder in Hydrogen Atmosphere at Moderate Temperatures, Metals. 8 (2018) 751.
DOI: 10.3390/met8100751
Google Scholar
[19]
Y. Wang, X. Wang, X. Hua, C. Zhao, W. Wang, The reduction mechanism and kinetics of Fe2O3 by hydrogen for chemical-looping hydrogen generation, J Therm Anal Calorim. 129 (2017) 1831–1838.
DOI: 10.1007/s10973-017-6267-7
Google Scholar
[20]
J.-C. Park, D. Kim, C.-S. Lee, D. Kim, A New Synthetic Route to Wüstite, Bull. Korean Chem. Soc. 20 (1999) 1005–1009.
Google Scholar
[21]
J. Zieliński, I. Zglinicka, L. Znak, Z. Kaszkur, Reduction of Fe2O3 with hydrogen, Applied Catalysis A: General. 381 (2010) 191–196.
DOI: 10.1016/j.apcata.2010.04.003
Google Scholar
[22]
L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction, Nuclear Instruments and Methods in Physics Research B. 268 (2010) 334–340.
DOI: 10.1016/j.nimb.2009.09.053
Google Scholar
[23]
D. Bruce, P. Hancock, Note on the Temperature Stability of Wüstite in Surface Oxide Films on iron, British Corrosion Journal. 4 (1969) 221–222.
DOI: 10.1179/000705969798325361
Google Scholar
[24]
B.H. Toby, R factors in Rietveld analysis: How good is good enough?, Powder Diffr. 21 (2006) 67–70.
DOI: 10.1154/1.2179804
Google Scholar
[25]
M. C. Bagatini, V. Zymla, E. Osório, A. C. F. Vilela, Characterization and Reduction Behavior of Mill Scale, ISIJ International. 51 (2011) 1072–1079.
DOI: 10.2355/isijinternational.51.1072
Google Scholar
[26]
A. Boontanom, T. Ungtrakul, P. Chirawatkul, P. Suwanpinij, Investigation of phase transformations in mill scales for the purification process, MP. 61 (2019) 509–516.
DOI: 10.3139/120.111347
Google Scholar