Design Solutions from Material Selection for Rib Fixators

Article Preview

Abstract:

The problems for fixing rib fractures are usually challenged with different rib fixators whose design strongly depends of the material selected for construction. Main issues refer to rib surgery implantation and tissue acceptance for a duration longer than the osteosynthesis. In this paper we discuss how a material selection can strongly suggest different design solutions both in shape of a rib fixator and even constraining or directing the surgical application with an invasive or noninvasive implantation. In particular, in discussing the general issues and specific experiences of the authors the paper illustrates examples of two different solutions under patent request that are dictated by the material whose selection give the design solutions with innovative aspects.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

303-308

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bemelman, M. Poeze, T.J. Blokhuis, L.P.H. Leenen, Historic overview of treatment techniques for rib fractures and flail chest, Trauma Emergency Surgery 36 (2010) 407-415.

DOI: 10.1007/s00068-010-0046-5

Google Scholar

[2] R. Labitzke, On the question of biomechanical testing of metal implants for the thoracic wall stabilization, Langenbeck's archive of surgery 354 (1981) 169-171.

Google Scholar

[3] J. Diaz, Rib Fracture Repair: Indications, Technical Issues, and Future Directions, World Journal of Surgery 33 (2009) 14-22.

DOI: 10.1007/s00268-008-9770-y

Google Scholar

[4] Y.F. Zheng, X. N. Gu, F. Witte, Biodegradable metals, Mat Sci Eng R 77 (2014) 1-34.

Google Scholar

[5] D. Mantovani, Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy, Proc., Natl Acad Sci U S A 113(3) (2016) 716-21.

Google Scholar

[6] Y. Chen, Z. Xu, C. Smith, J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomater. 10 (2014) 4561–4573.

DOI: 10.1016/j.actbio.2014.07.005

Google Scholar

[7] R. Biber, J. Pauser, M. Brem, H.J. Bail, Bioabsorbable metal screws in traumatology: A promising innovation, Trauma Case Rep. 8 (2017) 11–15.

DOI: 10.1016/j.tcr.2017.01.012

Google Scholar

[8] H. Feng, G. Wang, W. Jin, X. Zhang, Y. Huang, A. Gao, H. Wu, G. Wu, P.K. Chu, Systematic Study of Inherent Antibacterial Properties of Magnesium-based Biomaterials, ACS Appl. Mater. Interfaces 8 (2016) 9662–9673.

DOI: 10.1021/acsami.6b02241

Google Scholar

[9] J. Kuhlmann, I. Bartsch, E. Willbold, S. Schuchardt, O. Holz, N. Hort, D. Höche, WR Heineman, F. Witte, Fast escape of hydrogen from gas cavities around corroding magnesium implants, Acta Biomater. 9 (2013) 8714–8721.

DOI: 10.1016/j.actbio.2012.10.008

Google Scholar

[10] JCPDS-International Centre for Diffraction Data, Newtown Square, PA 19073, USA.

Google Scholar

[11] Ch.R. Torres San Miguel, Implante antirrotatorio para fractura de costilla, (Anti-rotatory implant for rib fractures), n. MX/u/2017/000533, 12/4/2017, Mexico City.

Google Scholar

[12] O. Ramirez, M. Ceccarelli, M. Russo, C. R. Torres-San-Miguel, G. Urriolagoitia-Calderon, Experimental Dynamic Tests of Rib Implants, in: Advances in Italian Mechanism Science, Springer AG 2019, p.353–361.

DOI: 10.1007/978-3-030-03320-0_38

Google Scholar

[13] V. Ambrogi, M. Ceccarelli, Placca di fissaggio per osteosintesi di coste fratturate (Fixing plate for osteosynthesis of fractured ribs), n. 102019000005638, Italy, 12/4/(2019).

Google Scholar

[14] M. Richetta, A. Varone, R. Montanari, M. Ceccarelli, V. Ambrogi, Design and tests of a Mg-based biodegradable rib-fixator prosthesis, Proc. of the 8th Int. Conf. Mechanics and Materials in Design, Bologna September (2019).

Google Scholar