[1]
H. Altenbach, Werkstoffmechanik: Einführung mit 14 Tabellen, Dt. Verl. für Grundstoff-industrie, Wiley-VCH (2001) Leipzig, Stuttgart.
Google Scholar
[2]
Kelley E.W., Hosford W.F., Deformation characteristics of textured magnesium, Transactions of The Metallurgical Society of the American Institute of Mining (1968) 654–661.
Google Scholar
[3]
T. Hama, H. Takuda, Crystal plasticity finite-element simulation of work-hardening behavior in a magnesium alloy sheet under biaxial tension, Computational Materials Science 51 (2012) 156–164.
DOI: 10.1016/j.commatsci.2011.07.026
Google Scholar
[4]
N. Chandola, R.A. Lebensohn, O. Cazacu, B. Revil-Baudard, R.K. Mishra, F. Barlat, Combined effects of anisotropy and tension–compression asymmetry on the torsional response of AZ31 Mg, International Journal of Solids and Structures 58 (2015) 190–200.
DOI: 10.1016/j.ijsolstr.2015.01.001
Google Scholar
[5]
A.S. Khan, A. Pandey, T. Gnäupel-Herold, R.K. Mishra, Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures, International Journal of Plasticity 27 (2011) 688–706.
DOI: 10.1016/j.ijplas.2010.08.009
Google Scholar
[6]
M.N. Mekonen, D. Steglich, J. Bohlen, D. Letzig, J. Mosler, Mechanical characterization and constitutive modeling of Mg alloy sheets, Materials Science and Engineering A 540 (2012) 174–186.
DOI: 10.1016/j.msea.2012.01.122
Google Scholar
[7]
M.N. Mekonen, D. Steglich, J. Bohlen, L. Stutz, D. Letzig, J. Mosler, Experimental and numerical investigation of Mg alloy sheet formability, Materials Science and Engineering A 586 (2013) 204–214.
DOI: 10.1016/j.msea.2013.07.088
Google Scholar
[8]
D. Banabic, H.-J. Bunge, K. Pöhlandt, A.E. Tekkaya, Formability of Metallic Materials: Plastic Anisotropy, Formability Testing, Forming Limits, Springer, Berlin, Heidelberg, (2000).
DOI: 10.1007/978-3-662-04013-3
Google Scholar
[9]
M.N. Mekonen, J. Bohlen, D. Steglich, D. Letzig, Mechanical characterisation of Mg alloys and model parameter identification for sheet forming simulations, International Journal of Material Forming 2 (2009) 53–56.
DOI: 10.1007/s12289-009-0437-5
Google Scholar
[10]
Y. Chino, H. Iwasaki, M. Mabuchi, Stretch formability of AZ31 Mg alloy sheets at different testing temperatures, Materials Science and Engineering A 466 (2007) 90–95.
DOI: 10.1016/j.msea.2007.02.027
Google Scholar
[11]
H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, C.N. Tomé, Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet, International Journal of Solids and Structures 47 (2010) 2905–2917.
DOI: 10.1016/j.ijsolstr.2010.06.016
Google Scholar
[12]
R. Kawalla, M. Oswald, C. Schmidt, M. Ullmann, H.-P. Vogt, N.D. Cuong, Development of a strip-rolling technology for Mg alloys based on the twin-roll-casting process, The Minerals, Metals & Materials Society (2008) 177–182.
DOI: 10.1016/j.matpr.2015.05.013
Google Scholar
[13]
R. Kawalla, M. Ullmann, M. Oswald, C. Schmidt, Properties of strips and sheets of magnesium alloy produced by casting-rolling technology, International Conference on Magnesium Alloys their Applications 7 (2006).
DOI: 10.4028/www.scientific.net/msf.690.21
Google Scholar
[14]
T. Henseler, M. Ullmann, R. Kawalla, F. Berge, Influence of the Sheet Manufacturing Process on the Forming Limit Behaviour of Twin-Roll Cast, Rolled and Heat-Treated AZ31, Key Engineering Materials 746 (2017) 154–160.
DOI: 10.4028/www.scientific.net/kem.746.154
Google Scholar
[15]
M. Ullmann, F. Berge, K. Neh, R. Kawalla, Development of a rolling technology for twin-roll cast magnesium strip, Metalurgija 4 (2015) 711–714.
DOI: 10.1016/j.matpr.2015.05.013
Google Scholar
[16]
M. Graf, T. Henseler, M. Ullmann, R. Kawalla, U. Prahl, B. Awiszus, Study on determination of flow behaviour of 6060-aluminium and AZ31-magnesium thin sheet by means of stacked compression test, IOP Conf. Ser.: Mater. Sci. Eng. 480 (2019) 12023.
DOI: 10.1088/1757-899x/480/1/012023
Google Scholar
[17]
R. Kawalla, M. Ullmann, T. Henseler, U. Prahl, Magnesium Twin-Roll Casting Technology for Flat and Long Products - State of the Art and Future, Materials Science Forum 941 (2018) 1431–1436.
DOI: 10.4028/www.scientific.net/msf.941.1431
Google Scholar
[18]
E. Doege, B.A. Behrens, Handbuch Umformtechnik: Grundlagen, Technologien, Maschinen, second. Aufl., Springer-Verlag, Heidelberg, Dordrecht, London, New York, (2010).
DOI: 10.1007/978-3-642-04249-2
Google Scholar
[19]
K. Siegert, Blechumformung, Springer-Verlag, Berlin, Heidelberg, (2015).
Google Scholar
[20]
T. Naka, T. Uemori, R. Hino, M. Kohzu, K. Higashi, F. Yoshida, Effects of strain rate, temperature and sheet thickness on yield locus of AZ31 magnesium alloy sheet, Journal of Materials Processing Technology 201 (2008) 395–400.
DOI: 10.1016/j.jmatprotec.2007.11.189
Google Scholar
[21]
L. Wang, Q. Qiao, Y. Liu, X. Song, Formability of AZ31 Mg alloy sheets within medium temperatures, Journal of Magnesium and Alloys 1 (2013) 312–317.
DOI: 10.1016/j.jma.2014.01.001
Google Scholar
[22]
G. Gottstein, T. Al-Samman, Texture Development in Pure Mg and Mg Alloy AZ31, Materials Science Forum 495-497 (2005) 623–632.
DOI: 10.4028/www.scientific.net/msf.495-497.623
Google Scholar
[23]
T. Mayama, M. Noda, R. Chiba, M. Kuroda, Crystal plasticity analysis of texture development in magnesium alloy during extrusion, International Journal of Plasticity 27 (2011) 1916–(1935).
DOI: 10.1016/j.ijplas.2011.02.007
Google Scholar
[24]
T. Hama, Y. Tanaka, M. Uratani, H. Takuda, Deformation behavior upon two-step loading in a magnesium alloy sheet, International Journal of Plasticity (2016).
DOI: 10.1016/j.ijplas.2016.03.009
Google Scholar
[25]
S.-H. Choi, D.H. Kim, H.W. Lee, B.S. Seong, K. Piao, R. Wagoner, Evolution of the deformation texture and yield locus shape in an AZ31 Mg alloy sheet under uniaxial loading, Materials Science and Engineering A 526 (2009) 38–49.
DOI: 10.1016/j.msea.2009.06.060
Google Scholar
[26]
D. Banabic, W. Hußnätter, Modeling the material behavior of magnesium alloy AZ31 using different yield criteria, The International Journal of Advanced Manufacturing Technology 44 (2009) 969–976.
DOI: 10.1007/s00170-008-1900-z
Google Scholar
[27]
J. Blaber, B. Adair, A. Antoniou, Ncorr: Open-Source 2D Digital Image Correlation Matlab Software, Experimental Mechanics (2015).
DOI: 10.1007/s11340-015-0009-1
Google Scholar