[1]
Y. Nomura, S. Minamoto, S. Nomoto, Simulations of solidification in Sn-3Ag-0.5Cu alloys by the multi-phase-field method, ISIJ International, 50 (2010) 1920-1924.
DOI: 10.2355/isijinternational.50.1920
Google Scholar
[2]
A. Sharif, Y. C. Chan, Liquid and solid state interfacial reactions of Sn-Ag-Cu and Sn-In-Ag-Cu solders with Ni-P under bump metallization, Thin Solid films, 504 (2006) 431-435.
DOI: 10.1016/j.tsf.2005.09.061
Google Scholar
[3]
J. G. Lee, A. Telang, K. N. Subramanian, T. R. Bieler, Modeling thermomechanical fatigue behavior of Sn-Ag solder joints, Journal of Electronic Materials, 31 (2002) 1152-1159.
DOI: 10.1007/s11664-002-0004-z
Google Scholar
[4]
Y. Kariya, S. Tajima, S. Yamada, Influence of crystallographic orientation on fatigue reliability of β-Sn and β-Sn micro-joint, Materials Transactions, 53 (2012) 2067-2071.
DOI: 10.2320/matertrans.mb201204
Google Scholar
[5]
Y. Hirai, K. Oomori, H. Morofushi, I. Shohji, Effect of Bi addition on tensile properties of Sn-Ag-Cu solder at low temperature, Materials Transactions, 60 (2019) 909-914.
DOI: 10.2320/matertrans.mh201807
Google Scholar
[6]
R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. Thompson, M. Christopher, The changing automotive environment: high-temperature electronics, IEEE Transactions on Electronics Packaging Manufacturing, 27 (2004) 164-176.
DOI: 10.1109/tepm.2004.843109
Google Scholar
[7]
K. Hine, S. Norimine, K. Mihara, S. Akiyama, A. Furusawa, K. Uenishi, Effects of Sb addition on phase transformation and thermal fatigue in Sn-Ag-Bi-In solder joints, Transactions of The Japan Institute of Electronics Packaging, 10 (2017) E16-006-1-10.
DOI: 10.5104/jiepeng.10.e16-006-1
Google Scholar
[8]
Y. Kariya, T. Niimi, T. Suga, M. Otsuka, Isothermal fatigue properties of Sn-Ag-Cu alloy evalulated by micro size specimen, Materials Transactions, 46 (2005) 2309-2315.
DOI: 10.2320/matertrans.46.2309
Google Scholar
[9]
Y. Kariya, T. Asai, T. Suga, Mechanical properties of lead-free solder alloys evaluated by miniature size specimen, Proc. of SPIE 5852 (2005) 297-301.
DOI: 10.1117/12.621538
Google Scholar
[10]
Y. Kariya, T. Niimi, T. Suga, M. Otsuka, Low cycle fatigue properties of solder alloys evaluated by micro bulk specimen, Proc. of IPACK2005 (2005) 1827-1832.
DOI: 10.1115/ipack2005-73165
Google Scholar
[11]
M. Reid, J. Punch, M. Collins, C. Ryan, Effect of Ag content on the microstructure of Sn-Ag-Cu based solder alloys, Soldering and Surface Mount Technology, 20 (2008) 3-8.
DOI: 10.1108/09540910810902651
Google Scholar
[12]
M. K. Pal, G. Gergely, D. K. Horváth, Z. Gácsi, Investigating the microstructural and mechanical properties of pure lead-free soldering materials (SAC305 & SAC405), Powder Metallurgy Progress, 18 (2018) 49-57.
DOI: 10.1515/pmp-2018-0006
Google Scholar
[13]
A.A. El-Daly, A.E. Hammad, Development of high strength Sn-0.7Cu solders with the addition of small amount of Ag and In, Journal of Alloys and Compounds, 509 (2011) 8554-8560.
DOI: 10.1016/j.jallcom.2011.05.119
Google Scholar
[14]
S. Mosaad, A. R. Mohamed, Mustafa Kamal, Characterization of indium addition on Sn-Bi-Sb lead free solder alloy, Journal of Advances in Physics, 12 (2016) 4231-4243.
DOI: 10.24297/jap.v12i2.56
Google Scholar