Quantitative Detection of Hydrogen Gas Release during Slow Strain Rate Testing in Aluminum Alloys

Article Preview

Abstract:

We have developed a new testing device which is capable of detecting hydrogen gas release during slow strain rate tensile testing (SSRT) under ordinary pressure. The device is composed of an SSRT machine equipped with a closed chamber with an inspection window that is connected to gas chromatography with a semiconductor hydrogen sensor. Local strain distribution in the specimen during the SSRT is monitored dynamically with a digital image correlation (DIC) method. Hydrogen was pre-charged to aluminum alloys by means of friction in water process. Using the device, it was shown that hydrogen was released particularly in the stage of plastic deformation and fracture. In addition, the hydrogen gas release at the moment of fracture was clearly increased when the alloys were hydrogen-charged and tested at a slow strain rate. When we calculated hydrogen gas release from the fracture surface in Al-Zn-Mg base alloys tested at 3.3×10-6 s-1, the hydrogen amount was estimated to be 6.24×10-10 mol /mm2 in a hydrogen-uncharged alloy, and 1.30×10-9 mol / mm2 in a hydrogen-charged alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

568-573

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Horikawa, J. Japan Inst. Light Met., 60 (2010) 542-547.

Google Scholar

[2] G. A. Young and J. R. Scully, Acta Mater., 46 (1998) 6337-6349.

Google Scholar

[3] S. Osaki et al., J. Japan Inst. Light Met., 56 (2006) 721-727.

Google Scholar

[4] K. Horikawa and K. Yoshida, Mater. Trans., 45 (2004) 315-318.

Google Scholar

[5] K. Horikawa, Y. Takahashi and H. Kobayashi, J. Japan Inst. Light Metals, 66(2010)84-89.

Google Scholar

[6] K. Horikawa, H. Okada, H. Kobayashi and W. Urushihara, Mater. Trans., 50 (2009) 2532–2540.

Google Scholar

[7] K. Horikawa, S. Hokazono and H. Kobayashi, J. Japan Inst. Light Metals, 66(2016)77-83.

Google Scholar

[8] K. Horikawa, H. Yamada and H. Kobayashi: J. Japan Inst. Light Metals, 62(2012)306-312.

Google Scholar

[9] H. Yamada, K. Horikawa and H. Kobayashi: J. Japan Inst. Light Metals, 61(2011)297-302.

Google Scholar

[10] H Toda, T. Hidaka, M. Kobayashi, K. Uesugi, A. Takeuchi and K. Horikawa, Acta Mater., 57(2009)2277-2290.

DOI: 10.1016/j.actamat.2009.01.026

Google Scholar

[11] K.Horikawa, N. Ando, H. Kobayashi and W. Urushihara, Mater. Sci. Engng. A, 534 (2012) 495-503.

Google Scholar

[12] H. Yamada, M. Tsurudome, N. Miura, K. Horikawa and N. Ogasawara, Mater. Sci. Engng. A, 642(2015) 194-203.

Google Scholar

[13] H. Toda, T. Inamori, K. Horikawa, K. Uesugi, A. Takeuchi, Y. Suzuki and M. Kobayashi, Mater. Trans., 54 (2013) 2195-2201.

DOI: 10.2320/matertrans.l-m2013832

Google Scholar

[14] K. Horikawa, H. Okada, H. Kobayashi and W. Urushihara, Mater. Trans., 50 (2009) 759-764.

Google Scholar

[15] K. Horikawa, Y. Takeuchi, K. Yoshida and H. Kobayashi, J. Japan Inst. Light Metals, 56 (2006) 210-213.

Google Scholar

[16] K. Horikawa and K. Yoshida, J. Japan Inst. Metals, 68 (2004) 1043-1046.

Google Scholar

[17] H. Yamada, N. Ogasawara, Y. Shimizu, K. Horikawa, H. Kobayashi and X. Chen, J. Eng. Mater. Tech., Trans. ASME, 135 (2013) 021010.

Google Scholar

[18] K. Horikawa, T. Matsubara and H. Kobayashi, Mater. Sci. Eng. A, 768(2019)133189.

Google Scholar

[19] K. Horikawa and H. Kobayashi, J. Visualized Experiments, e60711, (2020).

Google Scholar

[20] K. Horikawa and H. Kobayashi, J. Japan Inst. Metals, 84(2020) in press.

Google Scholar

[21] J. K. Tien et al., Metall. Trans., 7A (1976) 821–829.

Google Scholar