Improvement of Wheel Life by Optimization of Dressing Parameters in Surface Grinding of SKD11 Steel

Article Preview

Abstract:

This article describes an optimization of dressing parameters to improve the wheel life in surface grinding of hardened SKD 11 steel by using the Taguchi method. Dressing parameters including dressing feed rate, coarse dressing depth, coarse dressing times, fine dressing depth, fine dressing times, and non-feeding dressing were investigated to determine their influence on the wheel life. The DOE method developed by G. Taguchi was selected to design the experiments. An analysis of the signal-to-noise (S/N) response and ANOVA were conducted to obtain the optimal values of dressing parameters for maximizing the wheel life. In the results section, the coarse dressing times and the coarse dressing depth are determined to be the most influential factors which give a statistically significant effect on wheel life. Also, a predictive value of the average wheel life is given with a 3.6% deviation from the verification experiment.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1020)

Pages:

68-74

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. B. Rowe, Principles of modern grinding technology: William Andrew, (2013).

Google Scholar

[2] J. Palmer, H. Ghadbeigi, D. Novovic, and D. Curtis, An experimental study of the effects of dressing parameters on the topography of grinding wheels during roller dressing,, Journal of Manufacturing Processes, vol. 31, pp.348-355, (2018).

DOI: 10.1016/j.jmapro.2017.11.025

Google Scholar

[3] F. Klocke, J. Thiermann, and P. Mattfeld, Influence of the dressing process on grinding wheel wear,, Production Engineering, vol. 9, pp.563-568, (2015).

DOI: 10.1007/s11740-015-0606-y

Google Scholar

[4] D. D. Mohite and S. Jadhav, An Investigation of Effect of Dressing Parameters for Minimum Surface Roughness using CNC Cylindrical Grinding Machine,, IJREAS, vol. 6, pp.59-68, (2015).

Google Scholar

[5] L. A. Tung, V. N. Pi, V. T. Lien, T. T. Hong, L. X. Hung, and B. T. Long, Optimization of dressing parameters of grinding wheel for 9CrSi tool steel using the taguchi method with grey relational analysis,, in IOP Conference Series: Materials Science and Engineering, 2019, p.012030.

DOI: 10.1088/1757-899x/635/1/012030

Google Scholar

[6] H. X. Tu, T. T. Hong, N. T. T. Nga, J. Gong, and V. N. Pi, Influence of dressing parameters on surface roughness of workpiece for grinding hardened 9XC tool steel,, in IOP Conference Series: Materials Science and Engineering, 2019, p.012008.

DOI: 10.1088/1757-899x/542/1/012008

Google Scholar

[7] M. Novák, N. Naprstkova, and H. Kasuga, Influence of grinding wheel dressing on the roughness of final surface and cutting force during GGG60 grinding,, in Key Engineering Materials, 2016, pp.218-223.

DOI: 10.4028/www.scientific.net/kem.686.218

Google Scholar

[8] A. Azizi, S. M. Rezaei, and A. Rahimi, Study on the rotary cup dressing of CBN grinding wheel and the grinding performance,, The International Journal of Advanced Manufacturing Technology, vol. 47, pp.1053-1063, (2010).

DOI: 10.1007/s00170-009-2227-0

Google Scholar

[9] H. Baseri, S. Rezaei, A. Rahimi, and M. Saadat, Analysis of the disc dressing effects on grinding performance—part 2: effects of the wheel topographical parameters on the specific energy and workpiece surface roughness,, Machining Science and Technology, vol. 12, pp.197-213, (2008).

DOI: 10.1080/10910340802067429

Google Scholar

[10] X. Chen, Strategy for the selection of grinding wheel dressing conditions,, Liverpool John Moores University, (1995).

Google Scholar

[11] T. Buttery, A. Statham, J. Percival, and M. Hamed, Some effects of dressing on grinding performance,, Wear, vol. 55, pp.195-219, (1979).

DOI: 10.1016/0043-1648(79)90153-4

Google Scholar

[12] M. Rabiey, C. Walter, F. Kuster, J. Stirnimann, F. Pude, and K. Wegener, Dressing of hybrid bond CBN wheels using short-pulse fiber laser,, Journal of Mechanical Engineering, vol. 58, pp.462-469, (2012).

DOI: 10.5545/sv-jme.2011.166

Google Scholar

[13] I. Aleksandrova, Optimization of the dressing parameters in cylindrical grinding based on a generalized utility function,, Chinese Journal of Mechanical Engineering, vol. 29, pp.63-73, (2016).

DOI: 10.3901/cjme.2015.1103.130

Google Scholar

[14] G. Trmal and H. Kaliszer, Optimization of a grinding process and criteria for wheel life,, in Proceedings of the Fifteenth International Machine Tool Design and Research Conference, 1975, pp.311-315.

DOI: 10.1007/978-1-349-01986-1_37

Google Scholar

[15] T. Yu, A. F. Bastawros, and A. Chandra, Experimental and modeling characterization of wear and life expectancy of electroplated CBN grinding wheels,, International Journal of Machine Tools and Manufacture, vol. 121, pp.70-80, (2017).

DOI: 10.1016/j.ijmachtools.2017.04.013

Google Scholar

[16] T. Hwang, C. J. Evans, E. P. Whitenton, and S. Malkin, High speed grinding of silicon nitride with electroplated diamond wheels, part 1: wear and wheel life,, J. Manuf. Sci. Eng., vol. 122, pp.32-41, (2000).

DOI: 10.1115/1.538908

Google Scholar

[17] T. Hwang, C. J. Evans, and S. Malkin, High speed grinding of silicon nitride with electroplated diamond wheels, part 2: wheel topography and grinding mechanisms,, J. Manuf. Sci. Eng., vol. 122, pp.42-50, (2000).

DOI: 10.1115/1.538909

Google Scholar

[18] J.-S. Kwak and M.-K. Ha, Evaluation of wheel life by grinding ratio and static force,, KSME international journal, vol. 16, pp.1072-1077, (2002).

DOI: 10.1007/bf02984426

Google Scholar

[19] X. Chen, W. Rowe, and R. Cai, Precision grinding using CBN wheels,, International Journal of Machine Tools and Manufacture, vol. 42, pp.585-593, (2002).

DOI: 10.1016/s0890-6955(01)00152-3

Google Scholar

[20] J.-S. Kwak, Application of Taguchi and response surface methodologies for geometric error in surface grinding process,, International journal of machine tools and manufacture, vol. 45, pp.327-334, (2005).

DOI: 10.1016/j.ijmachtools.2004.08.007

Google Scholar

[21] V. Pi, A. Lu, L. Hung, and B. Long, Cost optimization of surface grinding process,, J. Environ. Sci. Eng., vol. 5, pp.606-611, (2016).

Google Scholar

[22] V. N. Pi, L. A. Tung, L. Hung, and N. Ngoc, Experimental determination of optimum exchanged diameter in surface grinding process,, J. Environ. Sci. Eng. A, vol. 6, pp.85-89, (2017).

DOI: 10.17265/2162-5298/2017.02.004

Google Scholar

[23] S. Shaji and V. Radhakrishnan, Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method,, Journal of Materials Processing Technology, vol. 141, pp.51-59, (2003).

DOI: 10.1016/s0924-0136(02)01112-3

Google Scholar

[24] L. Barczak, A. Batako, and M. Morgan, A study of plane surface grinding under minimum quantity lubrication (MQL) conditions,, International Journal of Machine Tools and Manufacture, vol. 50, pp.977-985, (2010).

DOI: 10.1016/j.ijmachtools.2010.07.005

Google Scholar

[25] G. Manimaran and R. Venkatasamy, Influence of cryogenic cooling on surface grinding of stainless steel 316,, Cryogenics, vol. 59, pp.76-83, (2014).

DOI: 10.1016/j.cryogenics.2013.11.005

Google Scholar

[26] T.-V. Do and Q.-C. Hsu, Optimization of minimum quantity lubricant conditions and cutting parameters in hard milling of AISI H13 steel,, Applied Sciences, vol. 6, p.83, (2016).

DOI: 10.3390/app6030083

Google Scholar

[27] M. S. Phadke, Quality engineering using design of experiments,, in Quality control, robust design, and the Taguchi method, ed: Springer, 1989, pp.31-50.

DOI: 10.1007/978-1-4684-1472-1_3

Google Scholar