Influence of Dressing Conditions on Surface Roughness when Surface Grinding SKD11 Steel

Article Preview

Abstract:

This paper presents an optimization of dressing conditions for SKD-11 steel grinding using HaiDuong grinding wheel made in Vietnam. Taguchi method was used to design experiment and calculate the optimized dressing conditions. Effects of the six input parameters including feed rate (S), depth of rough dressing cut (aedr), rough dressing times (nr), depth of finish dressing cut (aedf), finish dressing times (nf) and non-feeding dressing (nnon) with 4 levels on the machined surface roughness were investigated for optimization process. To find out the influence degree of each input parameter on output results, S/N ratio was analysized. Experimental results show that the average surface roughness after 3 times of the repeated experiments was 0.208 μm and deviation was 11.23% comparing with the predicted values.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1020)

Pages:

75-82

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Inasaki, I., (1991). Monitoring and Optimization of Internal Grinding Process. CIRP Ann. Manuf. Technol., 40, p.359–362.

DOI: 10.1016/s0007-8506(07)62006-x

Google Scholar

[2] Daneshi, Amir, Nima Jandaghi, and Taghi Tawakoli, (2014). Effect of dressing on internal cylindrical grinding. Procedia CIRP 14, pp.37-41.

DOI: 10.1016/j.procir.2014.03.064

Google Scholar

[3] Xiao, G., & Malkin, S. (1996). On-line optimization for internal plunge grinding. CIRP annals, 45(1), 287-292.

DOI: 10.1016/s0007-8506(07)63065-0

Google Scholar

[4] Gupta, R.; Shishodia, K.S.; Sekhon, G.S., (2001). Optimization of grinding process parameters using enumeration method. J. Mater. Process. Technol. 112, p.63–67.

DOI: 10.1016/s0924-0136(01)00546-5

Google Scholar

[5] Chatterjee, S.; Rudrapati, R.; Kumar pal, P.; Nandi, G., (2018). Experiments, analysis and parametric optimization of cylindrical traverse cut grinding of aluminium bronze. Mater. Today: Proc. 5, p.5272–5280.

DOI: 10.1016/j.matpr.2017.12.110

Google Scholar

[6] Li, G.F.; Wang, L.S.; Yang, L.B., (2002) Multi-parameter optimization and control of the cylindrical grinding process. J. Mater. Process. Technol. 129, p.232–236.

DOI: 10.1016/s0924-0136(02)00607-6

Google Scholar

[7] Rana, P.; Lalwani, D.I., (2017). Parameters optimization of surface grinding process using Modified"constrained Differential Evolution. Mater. Today: Proc. 4, p.10104–10108.

DOI: 10.1016/j.matpr.2017.06.329

Google Scholar

[8] Warnecke, G.; Barth, C., (1999). Optimization of the Dynamic Behavior of Grinding Wheels for Grinding of Hard and Brittle Materials Using the Finite Element Method. CIRP Ann. Manuf. Technol. 48, p.261–264.

DOI: 10.1016/s0007-8506(07)63179-5

Google Scholar

[9] Vu Ngoc Pi, Luu Anh Tung, Le Xuan Hung and Banh Tien Long, (2016). Cost Optimization of Surface Grinding Process, Journal of Environmental Science and Engineering A5, pp.606-611.

DOI: 10.17265/2162-5298/2016.12a.002

Google Scholar

[10] Tran, T. H., Hoang, X. T., Le, H. K., Nguyen, Q. T., Nguyen, T. T., Nguyen, T. T. N., Jun, G., & Vu, N. P. (2020). A Study on Cost Optimization of External Cylindrical Grinding. Materials Science Forum, 977, p.18–26.

DOI: 10.4028/www.scientific.net/msf.977.18

Google Scholar

[11] Tran, T.-H., et al., (2019). Optimization of replaced grinding wheel diameter for minimum grinding cost in internal grinding. Applied Sciences, 9(7), p.1363.

DOI: 10.3390/app9071363

Google Scholar

[12] Tu, H.X., et al., (2018). Determining optimum parameters of cutting fluid in external grinding of 9CrSi steel using Taguchi technique. SSRG Int. J. Mech. Eng, 5(6): pp.1-5.

DOI: 10.14445/23488360/ijme-v5i6p101

Google Scholar