[1]
Y.L. Kang, Theory and technology of processing and forming for advanced automobile steel sheets, Metallurgical Industry Press, Beijing, 2009, p.230–232.
Google Scholar
[2]
T. Senuma, Physical metallurgy of modern high strength steel sheets. ISIJ Int. 41 (2001) 520–532.
DOI: 10.2355/isijinternational.41.520
Google Scholar
[3]
W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A 280 (2000) 37-49.
DOI: 10.1016/s0921-5093(99)00653-x
Google Scholar
[4]
J. Hagstrom, R. Sandstrom, Mechanical properties of welded joints in thin walled aluminium extrusions, Sci. Technol. Weld. Join. 2. (1997) 199–208.
Google Scholar
[5]
F.H. Froes, Advanced metals for aerospace and automotive use, Mater. Sci. Eng. A 184 (1994) 119–33.
Google Scholar
[6]
P. J. Withers, H.K.D.H Bhadeshia, Residual Stress-II: Nature and Origins, Mat. Sci. Tech. 17 (2001) 366-375.
Google Scholar
[7]
D.M. Finch, A review of non-destructive residual stress measurement techniques, ERA Report 94-0101R, ERA Technology Ltd, Leatherhead, Surrey, UK, (1994).
Google Scholar
[8]
I.C. Noyan, T.C. Huang, B.R. York, Residual Stres/Strain Analysis in Thin Films by X-ray Diffraction, Critical Reviews in Solid State and Materials Sciences, 20 (1995) 125-177.
DOI: 10.1080/10408439508243733
Google Scholar
[9]
F. Kandil, J. D. Lord, A. T. Fry, P. Grant, A review of residual stress measurement methods - a guide to technique selection, NPL Report MATC(A)O4, (2001).
Google Scholar
[10]
M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton, L. Suominen, Determination of Residual Stresses by X-ray Diffraction, NPL Guide No. 52, UK, (2005).
Google Scholar
[11]
U. Reisgen, R. Sharma, S. Gach, S. Olschok, J. Francis, K. Bobzin, M. Oete, S. Wiesner, M. Knoch, A. Schmidt, Residual Stress Measurement in AlSi Alloys, Mat. Sci. Eng. Tech. 48 (2017) 1270-1275.
DOI: 10.1002/mawe.201700157
Google Scholar
[12]
S. Khorsand, Y. Huang, Integrated Casting-Extrusion (ICE) of an AA6082 Aluminium Alloy, Light Metals, Light Metals 2017, The Minerals, Metals & Materials Series (2017) 235-241.
DOI: 10.1007/978-3-319-51541-0_32
Google Scholar
[13]
D. Ogawa, T. Kakiuchi, K. Hashiba, Y. Uematsu, Residual stress measurement of Al/steel dissimilar friction stir weld, Science and Technology of Welding and Joining, 24 (2019) 1-10.
DOI: 10.1080/13621718.2019.1588521
Google Scholar
[14]
H.J. Bunge, Texture Analysis in Materials Science: Mathematical Methods, Butterworths-Heinemann, London, (1982).
Google Scholar
[15]
N.C. Popa, Texture in Rietveld refinement, J. Appl. Crystallogr. 25 (1992) 611-616.
DOI: 10.1107/s0021889892004795
Google Scholar
[16]
R.B. Von Dreele, Quantitative texture analysis by Rietveld refinement, J. Appl. Crystallogr. 30 (1997) 517-525.
DOI: 10.1107/s0021889897005918
Google Scholar
[17]
Bruker AXS, Diffrac C Plus Leptos 7, DOC-M88-EXX052 V7, Germany, (2009).
Google Scholar
[18]
L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction, Nuclear Inst. and Methods in Physics Research B 268 (2010) 334-340.
DOI: 10.1016/j.nimb.2009.09.053
Google Scholar
[19]
L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, H.R. Wenk, Rietveld texture analysis from diffraction images, Z. Kristallogr., Suppl. 26 (2007) 125-130.
DOI: 10.1524/zksu.2007.2007.suppl_26.125
Google Scholar
[20]
L. Lutterotti, D. Chateigner, S. Ferrari, J. Ricote, Texture, residual stress and structural analysis of thin films using a combined x-ray analysis, Thin Solid Films 450 (2004) 34-41.
DOI: 10.1016/j.tsf.2003.10.150
Google Scholar