[1]
Q.J. Lin, H. Wu, F.Z. Zhang, C. Y. Wang and Z. D. Jiang, Research on Fractal Characterization of the Surface Morphology of Cu/Ti Nano Thin Film, Acta Metrologica Sinica. 2018, 39, 593-597.
Google Scholar
[2]
A. Boampong, J.R. Kim, J.H. Lee and M-H Kim, Enhancement of the Electrical Performance of the Organic Ferroelectric Memory Transistor by Reducing the Surface Roughness of the Polymer Insulator with a Homo-Bilayer PVDF-TrFE, Journal of Nanoscience and Nanotechnoogy. 2017, 17, 5722-5725.
DOI: 10.1166/jnn.2017.14167
Google Scholar
[3]
J.S. Li, Y Tang, Z.T. Li, X. R. Ding and Z. Li, Study on the optical performance of thin-film light-emitting diodes using fractal micro-roughness surface model, Applied Surface Science. 2017, 410, 60-69.
DOI: 10.1016/j.apsusc.2017.03.041
Google Scholar
[4]
L. Q. Chen, Phase-field method for microstructure evolution, Annual Review of Materials Research. 2002, 32, 113-140.
Google Scholar
[5]
I. Steinbach, Phase-field models in materials science, Modelling and Simulation in Materials Science and Engineering. 2009, 17, 073001.
DOI: 10.1088/0965-0393/17/7/073001
Google Scholar
[6]
I. Singer-Loginova and H. M. Singer, The phase field technique for modeling multiphase materials, Reports on Progress in Physics. 2008, 71, 106501.
DOI: 10.1088/0034-4885/71/10/106501
Google Scholar
[7]
Y. Z. Wang and J. Li. Phase field modeling of defects and deformation. Acta Materialia. 2010, 58, 1212-1235.
DOI: 10.1016/j.actamat.2009.10.041
Google Scholar
[8]
L. Q. Chen, Phase-field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A review, Journal of the American Ceramic Society. 2008, 91, 1835-1844.
DOI: 10.1111/j.1551-2916.2008.02413.x
Google Scholar
[9]
Y. U. Wang, Y. M. Jin and A. G. Khachaturyan, Phase field microelasticity modeling of surface instability of heteroepitaxial thin films. Acta Materialia. 2004, 52, 81-92.
DOI: 10.1016/j.actamat.2003.08.027
Google Scholar
[10]
D. J. Seol, S. Y. Hu, Z. K. Liu and L. Q. Chen, Phase-field modeling of stress-induced surface instabilities in heteroepitaxial thin films, Journal of Applied Physics. 2005, 98,1789.
DOI: 10.1063/1.1996856
Google Scholar
[11]
P. P. Wu, F. L. Gao, and G. Q. Li, Effects of buffer layer thickness on the surface roughness of In0.3Ga0.7As thin films: A phase-field simulation, Journal of Materials Research, 2013, 28(23), 3218- 3225.
DOI: 10.1557/jmr.2013.320
Google Scholar
[12]
P. P. Wu, G. Wang and S. M. Pang, A Phase-Field Model for Multilayered Heterostructure Morphology, Materials science forum. 2019, 944, 788-794.
DOI: 10.4028/www.scientific.net/msf.944.788
Google Scholar
[13]
Q. J. Lin, S. M. Yang, C. Y. Wang, J. J. Ding and Z. D. Jiang, Multifractal analysis for Cu/Ti bilayer thin films, Surface and Interface Analysis, 2013, 45, 1223-1227.
DOI: 10.1002/sia.5258
Google Scholar
[14]
A. G. Khachatryan, Theory of Structural Transformations in Solid, Wiley, New York, (1983).
Google Scholar
[15]
J. F. Nye, Physical Properties of Crystals, Oxford University Press, Oxford, (1985).
Google Scholar
[16]
Q. J. Liu, First principles calculations of electronic structure and elastic constants of hexagonal ti crystal under pressure, Journal of China Three Gorges University (Natural Science Edition). (2009).
Google Scholar
[17]
C. Kittel, Introduction to Solid State Physics, 8th Edition, John Wiley and sons, New York, (2005).
Google Scholar