Research on Vortex Electromagnetic Wave Based on Coding Metasurface

Article Preview

Abstract:

The characteristics of vortex electromagnetic wave generated by coding metasurface were studied, and the transmission-type metasurface of vortex wave was designed based on coding unit. It was found that the coding metasurface could replace the quasi-continuous phase to reduce the difficulty of the unit design. But when the orbital angular momentum increased gradually the spacing of two main lobes increased, the side lobes increased, and the vortex waves of other orbital angular momentum reduced. Based on this limitation, this paper optimizes the arrangement of units by genetic algorithm in order to maximize the performance of vortex electromagnetic wave in the limited metasurface size, so that the vortex electromagnetic wave energy is concentrated in the main lobes, thereby enhancing the purity of the orbital angular momentum mode and reducing the electromagnetic wave carrying the orbital angular momentum with other modes, and reduce the main lobes spacing is conducive to propagation. Finally, the feasibility of the method is verified by simulation measurement.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

724-731

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Allen, M.W. Beijersbergen, R. J. C. Spreeuw, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A , 1992, 45(11), 8185–8189.

DOI: 10.1103/physreva.45.8185

Google Scholar

[2] D. Zhang, X.Y. Cao, H.H. Yang, J. Gao. Radiation Performance Synthesis for OAM Vortex Wave Generated by Reflective Metasurface[J]. IEEE Access, 2018, 6(1): 28691-28701.

DOI: 10.1109/access.2018.2839099

Google Scholar

[3] Y.H. Cho, W.J. Byun 2019 IEEE Trans.Antennas Propag. 99 1616.

Google Scholar

[4] H. Qin, R. Tso 2019 J. Chin. Inst. Eng. 42 1.

Google Scholar

[5] M.L.N. Chen, L.J. Jiang, W.E. Sha 2019 IEEE Antennas Wirel. Propag. Lett. 18 477.

Google Scholar

[6] J.Q. Hu, C.S. Brès, C.B. Huang 2018 Opt. Lett. 43 4033.

Google Scholar

[7] P. Woocheon, W. Lei, D.B. Heinz 2018 IEEE Trans.Antennas Propag. 99 1.

Google Scholar

[8] Z. Kuang, Y.Y. Yue, W.Z. Da 2018 Opt. Lett. 26 1351.

Google Scholar

[9] G. Ruffato, R. Rossi, M. Massari 2017 Sci Rep 7 18011.

Google Scholar

[10] Z.F. Zhang, S.L. Zheng, X.F. Jin 2016 IEEE Antennas Wirel. Propag. Lett. 16 1.

Google Scholar

[11] H.H. Yang, F. Yang, X.Y. Cao, J. Gao 2017 IEEE Trans. Antennas Propag. 18 1.

Google Scholar

[12] Y. Zhao, J. Gao, X.Y. Cao, T. Liu, L. Xu, X. Liu 2017 IEEE Trans. Antennas Propag. 65 943.

Google Scholar

[13] Z.Y.J, X.Y. Cao, J. Gao, H.H. Yang, Y.L. Zhou, T. Liu 2017 Opt. Lett. 25 30001.

Google Scholar

[14] W. Lei, J. Fa, Y. Zhe, Y. Jie, G. Guan, S. Hikmet 2018 IET Commun. 12 1416.

Google Scholar

[15] F. Qin, L.L. Wan, L.H. Li 2018 IEEE Antennas Wirel. Propag. Lett. 1 1.

Google Scholar

[16] S.Yu, L.Li, N.Kou. Generation 2017 Opt. Mater. Express 7 3312.

Google Scholar

[17] J.Q. Han, L. Li, H. Yi, Y. Shi 2018 Opt. Mater. Express 8 3470.

Google Scholar

[18] M.L.N. Chen, L.J. Jiang, W.E.I. Sha 2019 IEEE Antennas Wirel. Propag. Lett. 18 477.

Google Scholar

[19] D. Zhang, X.Y. Cao, H.H. Yang, J. Gao, S.Q. Lv 2019 Chin. Phys. B.

Google Scholar

[20] D. Zhang, X.Y. Cao, H.H. Yang, J. Gao, X.W. Zhu 2018 Opt. Express 26 24804.

Google Scholar

[21] D. Zhang, X.Y. Cao, J. Gao , H.H .Yang. 2019 IEEE Antennas and Wireless Propagation Letters 18 566-570.

Google Scholar