High Pressure Sintering of Silicon Carbide with Mg-Cr3C2 Composite Additive

Article Preview

Abstract:

Porous silicon carbide was sintered at 1300 °C/30 MPa for 2 h with 4 wt.% magnesium alloy and 4 wt.% chromium carbide composite additives. The sintered ceramic presented density of around 92% of the theoretical density. No new phase was observed after sintering. Mg segregates around chromium carbide particles in sintered ceramic. The silicon carbide particles were mainly bonded by melt magnesium alloy and chromium carbide diffused in solid state. The voids existed in the sintered ceramic, but much more fracture occurred in silicon carbide particles during bending due to high bonding strength of sintering necks. Some voids existed in the ceramic, which act as crack sources during fracture.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

768-772

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Agarwal, G. Duscher, Y. Zhao, Multiscale characterization of irradiation behaviour of ion-irradiated SiC/SiC composites, Acta Mater. 161 (2018) 207-220.

DOI: 10.1016/j.actamat.2018.09.012

Google Scholar

[2] C. Vakifahmetoglu, D. Zeydanli, P. Colombo, Porous polymer derived ceramics, Mater. Sci. Eng. R 106 (2016) 1-30.

Google Scholar

[3] L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M Yang, S. Mathaudhu, X.C. Li, Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles, Nature 528 (2015) 539-543.

DOI: 10.1038/nature16445

Google Scholar

[4] J. Wang, Y. Zhou, Z. Wang, A. Rasmita, J. Yang, X. Li, H. J. von Bardeleben, W. Gao, Bright room temperature single photon source at telecom range in cubic silicon carbide, Nat. Commun. 9 (2018) 4106.

DOI: 10.1038/s41467-018-06605-3

Google Scholar

[5] I.W. Chen, X.H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature 404 (2000) 168-171.

DOI: 10.1038/35004548

Google Scholar

[6] G. Magnani, G. Sico, A. Brentari, F. Paride, Solid-state pressureless sintering of silicon carbide below 2000 °C, J. Eur. Ceram. Soc. 34 (2014) 4095-4098.

DOI: 10.1016/j.jeurceramsoc.2014.06.006

Google Scholar

[7] Q. He, A. Wang, C. Liu, W. Wang, H. Wang, Z. Fu, Microstructures and mechanical properties of B4C-TiB2-SiC composites fabricated by ball milling and hot pressing, J. Eur. Ceram. Soc. 38 (2018) 2832-2840.

DOI: 10.1016/j.jeurceramsoc.2018.02.020

Google Scholar

[8] W.J. Moberlychan, J.J. Cao, L.C.D. Jonghe, The roles of amorphous grain boundaries and the β-α, transformation in toughening SiC, Acta Mater. 46 (1998) 1625-1635.

DOI: 10.1016/s1359-6454(97)00343-1

Google Scholar

[9] J. Li, X. Ren, Y. Zhang, H. Hou, Porous process and its effects on the microstructure and properties of SiC ceramics sintered with Mg additive, J. Mater. Res. Technol. 9 (2020) 33-41.

DOI: 10.1016/j.jmrt.2019.10.026

Google Scholar

[10] J. Li, X. Ren, Y. Zhang, H. Hou, Silicon carbide hot pressing sintered by magnesium additive: microstructure and sintering mechanism, J. Mater. Res. Technol. 9 (2020) 520-529.

DOI: 10.1016/j.jmrt.2019.10.081

Google Scholar

[11] Y. Wang, X. Ren, H. Hou, Y. Zhang, W.Yan, Processing and pore structure of aluminium foam sandwich, Powder Technol. 275 (2015) 344-350.

DOI: 10.1016/j.powtec.2015.01.066

Google Scholar

[12] Y. Xue, H.El Kadiri, M.F. Horstemeyer, J.B. Jordon, H. Weiland, Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy, Acta Mater. 55 (2007) 1975-1984.

DOI: 10.1016/j.actamat.2006.11.009

Google Scholar

[13] A. Luo, Heterogeneous nucleation and grain refinement in cast Mg(AZ91)/SiCp, metal matrix composites, Can. Metall. Quart. 35 (1996) 375-383.

DOI: 10.1016/s0008-4433(96)00014-6

Google Scholar