Mechanical Crystallization of Amorphous Ti50Al30Ni20 Alloy Prepared by Mechanical Alloying

Article Preview

Abstract:

Laser diffraction, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) were employed to characterize the particle size, morphology and structure of mechanically alloyed Ti50Al30Ni20 alloy. Cyclic amorphous-crystalline-amorphous phase transformations were investigated during mechanical alloying, using high-energy ball milling technique. After 20 h of milling, an amorphous/nanocrystalline phase was obtained. This amorphous/nanocrystalline phase tended to transform into crystalline grains after 50 h of milling. In a cyclic phase transformation, the obtained crystalline phase is transformed into the amorphous phase after 70 h of milling. This amorphous phase crystallized through a single sharp exothermic peak at 590°C. On the basis of our results, the destabilizing effect of the defects created by the milling media (balls), which leads to the cyclic transformations, depends on the input energy and milling time.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1059)

Pages:

3-8

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Raghavan, Al-Ni-Ti (Aluminum-Nickel-Titanium), Journal of Phase Equilibria and Diffusion. 31 (2010) 55-56, 10.1007/s11669-009-9626-7.

DOI: 10.1007/s11669-009-9626-7

Google Scholar

[2] J.C. Schuster, Z. Pan, S. Liu, F. Weitzer, Y. Du, On the constitution of the ternary system Al-Ni-Ti, Intermetallics. 15 (2007) 1257-1267, 10.1016/j.intermet.2007.03.003.

DOI: 10.1016/j.intermet.2007.03.003

Google Scholar

[3] A. Dȩbski, W. Ga̧sior, A. Sypień, A. Góral, Enthalpy of formation of intermetallic phases from Al-Ni and Al-Ni-Ti systems, Intermetallics. 42 (2013) 92-98, 10.1016/j.intermet.2013.05.016.

DOI: 10.1016/j.intermet.2013.05.016

Google Scholar

[4] F. Appel, H. Clemens, F.D. Fischer, Modeling concepts for intermetallic titanium aluminides, Progress in Materials Science. 81 (2016) 55-124, 10.1016/j.pmatsci.2016.01.001.

DOI: 10.1016/j.pmatsci.2016.01.001

Google Scholar

[5] R.M. Aranda Louvier, R. Astacio López, F. Ternero Fernández, P. Urban, F.G. Cuevas, Structure and Size Distribution of Powders Produced from Melt-Spun Fe-Si-B Ribbons, Key Engineering Materials. 876 (2021) 25-30, 10.4028/www.scientific.net/KEM.876.25.

DOI: 10.4028/www.scientific.net/kem.876.25

Google Scholar

[6] P. Urban, F. Ternero Fernández, R.M. Aranda Louvier, R. Astacio López, J. Cintas Físico, Solid State Amorphization of Ti60Si40 Alloy via Mechanical Alloying, Key Engineering Materials. 876 (2021) 7-12, 10.4028/www.scientific.net/KEM.876.7.

DOI: 10.4028/www.scientific.net/kem.876.7

Google Scholar

[7] R. Astacio López, R.M. Aranda Louvier, P. Urban, F. Ternero Fernández, J.M. Montes Martos, Effects of Milling Variables in Amorphous Phase Formation of Fe78Si9B13 Alloy Produced by Mechanical Alloying, Key Engineering Materials. 876 (2021) 19-24, 10.4028/www.scientific.net/KEM.876.19.

DOI: 10.4028/www.scientific.net/kem.876.19

Google Scholar

[8] P. Urban, F. Ternero, E.S. Caballero, S. Nandyala, J.M. Montes, F.G. Cuevas, Amorphous Al-Ti Powders Prepared by Mechanical Alloying and Consolidated by Electrical Resistance Sintering, Metals. 9(11) (2019) 1140-1153, 10.3390/met9111140.

DOI: 10.3390/met9111140

Google Scholar

[9] A. Rostami, G.A. Bagheri, S.K. Sadrnezhaad, Microstructure and thermodynamic investigation of Ni–Ti system produced by mechanical alloying, Physica B: Condensed Matter. 552 (2019) 214-220, 10.1016/j.physb.2018.10.015.

DOI: 10.1016/j.physb.2018.10.015

Google Scholar

[10] M. Karolus, J. Panek, Nanostructured Ni–Ti alloys obtained by mechanical synthesis and heat treatment, Journal of Alloys and Compounds. 658 (2016) 709-715, 10.1016/j.jallcom.2015.10.286.

DOI: 10.1016/j.jallcom.2015.10.286

Google Scholar

[11] R.S. Maurya, A. Sahu, T. Laha, Quantitative phase analysis in Al86Ni8Y6 bulk glassy alloy synthesized by consolidating mechanically alloyed amorphous powder via spark plasma sintering, Materials and Design. 93 (2016) 96–103, 10.1016/j.matdes.2015.12.129.

DOI: 10.1016/j.matdes.2015.12.129

Google Scholar

[12] M.S. El-Eskandarany, Amorphous-i phase-big cube-amorphous cyclic phase transformation of mechanically alloyed Zr75Ni20Al5 system, Intermetallics. 63 (2015) 27-36, 10.1016/j.intermet.2015.01.010.

DOI: 10.1016/j.intermet.2015.01.010

Google Scholar

[13] Y. Wang, H.R. Geng, Y.Z. Wang, Influence of outphase Cu50Ti50 amorphous alloy addition on microstructural evolution of mechanically alloyed Zr66.7Ni33.3 amorphous alloy, Journal of Non-Crystalline Solids. 357 (2011) 78–82, 10.1016/j.jnoncrysol.2010.09.011.

DOI: 10.1016/j.jnoncrysol.2010.09.011

Google Scholar