[1]
V. Raghavan, Al-Ni-Ti (Aluminum-Nickel-Titanium), Journal of Phase Equilibria and Diffusion. 31 (2010) 55-56, 10.1007/s11669-009-9626-7.
DOI: 10.1007/s11669-009-9626-7
Google Scholar
[2]
J.C. Schuster, Z. Pan, S. Liu, F. Weitzer, Y. Du, On the constitution of the ternary system Al-Ni-Ti, Intermetallics. 15 (2007) 1257-1267, 10.1016/j.intermet.2007.03.003.
DOI: 10.1016/j.intermet.2007.03.003
Google Scholar
[3]
A. Dȩbski, W. Ga̧sior, A. Sypień, A. Góral, Enthalpy of formation of intermetallic phases from Al-Ni and Al-Ni-Ti systems, Intermetallics. 42 (2013) 92-98, 10.1016/j.intermet.2013.05.016.
DOI: 10.1016/j.intermet.2013.05.016
Google Scholar
[4]
F. Appel, H. Clemens, F.D. Fischer, Modeling concepts for intermetallic titanium aluminides, Progress in Materials Science. 81 (2016) 55-124, 10.1016/j.pmatsci.2016.01.001.
DOI: 10.1016/j.pmatsci.2016.01.001
Google Scholar
[5]
R.M. Aranda Louvier, R. Astacio López, F. Ternero Fernández, P. Urban, F.G. Cuevas, Structure and Size Distribution of Powders Produced from Melt-Spun Fe-Si-B Ribbons, Key Engineering Materials. 876 (2021) 25-30, 10.4028/www.scientific.net/KEM.876.25.
DOI: 10.4028/www.scientific.net/kem.876.25
Google Scholar
[6]
P. Urban, F. Ternero Fernández, R.M. Aranda Louvier, R. Astacio López, J. Cintas Físico, Solid State Amorphization of Ti60Si40 Alloy via Mechanical Alloying, Key Engineering Materials. 876 (2021) 7-12, 10.4028/www.scientific.net/KEM.876.7.
DOI: 10.4028/www.scientific.net/kem.876.7
Google Scholar
[7]
R. Astacio López, R.M. Aranda Louvier, P. Urban, F. Ternero Fernández, J.M. Montes Martos, Effects of Milling Variables in Amorphous Phase Formation of Fe78Si9B13 Alloy Produced by Mechanical Alloying, Key Engineering Materials. 876 (2021) 19-24, 10.4028/www.scientific.net/KEM.876.19.
DOI: 10.4028/www.scientific.net/kem.876.19
Google Scholar
[8]
P. Urban, F. Ternero, E.S. Caballero, S. Nandyala, J.M. Montes, F.G. Cuevas, Amorphous Al-Ti Powders Prepared by Mechanical Alloying and Consolidated by Electrical Resistance Sintering, Metals. 9(11) (2019) 1140-1153, 10.3390/met9111140.
DOI: 10.3390/met9111140
Google Scholar
[9]
A. Rostami, G.A. Bagheri, S.K. Sadrnezhaad, Microstructure and thermodynamic investigation of Ni–Ti system produced by mechanical alloying, Physica B: Condensed Matter. 552 (2019) 214-220, 10.1016/j.physb.2018.10.015.
DOI: 10.1016/j.physb.2018.10.015
Google Scholar
[10]
M. Karolus, J. Panek, Nanostructured Ni–Ti alloys obtained by mechanical synthesis and heat treatment, Journal of Alloys and Compounds. 658 (2016) 709-715, 10.1016/j.jallcom.2015.10.286.
DOI: 10.1016/j.jallcom.2015.10.286
Google Scholar
[11]
R.S. Maurya, A. Sahu, T. Laha, Quantitative phase analysis in Al86Ni8Y6 bulk glassy alloy synthesized by consolidating mechanically alloyed amorphous powder via spark plasma sintering, Materials and Design. 93 (2016) 96–103, 10.1016/j.matdes.2015.12.129.
DOI: 10.1016/j.matdes.2015.12.129
Google Scholar
[12]
M.S. El-Eskandarany, Amorphous-i phase-big cube-amorphous cyclic phase transformation of mechanically alloyed Zr75Ni20Al5 system, Intermetallics. 63 (2015) 27-36, 10.1016/j.intermet.2015.01.010.
DOI: 10.1016/j.intermet.2015.01.010
Google Scholar
[13]
Y. Wang, H.R. Geng, Y.Z. Wang, Influence of outphase Cu50Ti50 amorphous alloy addition on microstructural evolution of mechanically alloyed Zr66.7Ni33.3 amorphous alloy, Journal of Non-Crystalline Solids. 357 (2011) 78–82, 10.1016/j.jnoncrysol.2010.09.011.
DOI: 10.1016/j.jnoncrysol.2010.09.011
Google Scholar