[1]
A. A. Luo, Magnesium casting technology for structural applications. J. Magnes. Alloy 1 (2013) 2–22.
Google Scholar
[2]
I. A. Anyanwu, Y. Gokan, S. Nozawa, S. Kamado, Y. Kojima, S. Takeda, T. Ishida, Heat resistant magnesium alloys for automotive powertrain applications. Mater. Sci. Forum. 2003, 419-422, 445–450.
DOI: 10.4028/www.scientific.net/msf.419-422.445
Google Scholar
[3]
M. Kiani, I. Gandikota, M. Rais-Rohani, K. Motoyama, Design of lightweight magnesium car body structure under crash and vibration constraints. J. Magnes. Alloy. 2 (2014) 99–108.
DOI: 10.1016/j.jma.2014.05.005
Google Scholar
[4]
F. Czerwinski, Controlling the ignition and flammability of magnesium for aerospace applications. Corrosion Science 86 (2014) 1–16.
DOI: 10.1016/j.corsci.2014.04.047
Google Scholar
[5]
J. Buha, Natural ageing in magnesium alloys and alloying with Ti. J. Mater. Sci. 43 (2008) 1220–1227.
DOI: 10.1007/s10853-007-2250-1
Google Scholar
[6]
J. Buha, The effect of Ba on the microstructure and age hardening of an Mg-Zn alloy. Mater. Sci. Eng., A, 491 (2008) 70–79.
DOI: 10.1016/j.msea.2008.01.027
Google Scholar
[7]
J. Buha, Reduced temperature (22-100 °C) ageing of an Mg-Zn alloy. Mater. Sci. Eng. A, 492 (2008) 11–19.
DOI: 10.1016/j.msea.2008.02.038
Google Scholar
[8]
X. Gao, J. F. Nie, Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy. Scr. Mater. 57 (2007) 655–658.
DOI: 10.1016/j.scriptamat.2007.06.005
Google Scholar
[9]
B. Smola, I. Stulíková, J. Pelcová, B. L. Mordike, Significance of stable and metastable phases in high temperature creep resistant magnesium-rare earth base alloys. J. Alloys Compd. 378 (2004) 196–201.
DOI: 10.1016/j.jallcom.2003.10.099
Google Scholar
[10]
V. Šustek, S. Spigarelli, J. Cadek, Creep behaviour at high stresses of a Mg-Zn-Ca-Ce-La alloy processed by rapid solidification. Scr. Mater. 35 (1996) 449–454.
DOI: 10.1016/1359-6462(96)00141-8
Google Scholar
[11]
L.Liu, X. Chen, F. Pan, S. Gao, C. Zhao, A new high-strength Mg-Zn-Ce-Y-Zr magnesium alloy. J. Alloys Compd. 688 (2016) 537–541.
DOI: 10.1016/j.jallcom.2016.07.144
Google Scholar
[12]
X. Guo, D. Shechtman, Extruded high-strength solid materials based on magnesium with zinc, yttrium, and cerium additives. Glass Phys. Chem. 31 (2005) 44–52.
DOI: 10.1007/s10720-005-0023-y
Google Scholar
[13]
X. Guo, J. Kinstler, L. Glazman, D. Shechtman, High strength Mg-Zn-Y-Ce-Zr alloy bars prepared by RS and extrusion technology. Mater. Sci. Forum 2005, 488-489, 495–498.
DOI: 10.4028/www.scientific.net/msf.488-489.495
Google Scholar
[14]
W. Yang, X. Guo, A high strength Mg-6Zn-1Y-1Ce alloy prepared by hot extrusion. Journal of Wuhan University of Technology-Mater Sci Ed. 28 (2013) 389–395.
DOI: 10.1007/s11595-013-0701-x
Google Scholar
[15]
W. Yang, X. Guo, Z. Li. TEM microstructure of rapidly solidified Mg–6Zn–1Y1–Ce alloy. Transactions of Nonferrous Metals Society of China 2012, 22, 786–792.
DOI: 10.1016/s1003-6326(11)61246-6
Google Scholar
[16]
S. Ohhashi, A. Kato, M. Demura, A.P. Tsai, Textures and mechanical properties in rare-earth free quasicrystal reinforced Mg-Zn-Zr alloys prepared by extrusion. Mater. Sci. Eng. A 528 (2011) 5871–5874.
DOI: 10.1016/j.msea.2011.04.014
Google Scholar
[17]
M.A. Azeem, A. Tewari, S. Mishra, S. Gollapudi, U. Ramamurty, Development of novel grain morphology during hot extrusion of magnesium AZ21 alloy. Acta Mater. 58 (2010) 1495–1502.
DOI: 10.1016/j.actamat.2009.10.056
Google Scholar
[18]
T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado, K. Hono, A high-strength Mg-Sn-Zn-Al alloy extruded at low temperature. Scr. Mater. 59 (2008) 1111–1114.
DOI: 10.1016/j.scriptamat.2008.07.042
Google Scholar
[19]
Y. Zhang, X. Zeng, C. Lu, W. Ding, Deformation behavior and dynamic recrystallization of a Mg-Zn-Y-Zr alloy. Mater. Sci. Eng. A 428 (2006) 91–97.
DOI: 10.1016/j.msea.2006.04.103
Google Scholar
[20]
RA A., ZW B., WAC A. Analysis of double cross-slip of pyramidal I 〈c+a〉 screw dislocations and implications for ductility in Mg alloys [J]. Acta Materialia, 183(2020): 228-241.
DOI: 10.1016/j.actamat.2019.10.053
Google Scholar
[21]
H. Fan, Q. Wang, X. Tian, El-Awady, J.A. Temperature effects on the mobility of pyramidal <c + a> greater dislocations in magnesium. Scripta Mater. 127 (2017): 68–71.
DOI: 10.1016/j.scriptamat.2016.09.002
Google Scholar
[22]
FENG, KANG, ZHENG. The activation of 〈c + a〉 non-basal slip in Magnesium alloys[J]. Journal of Materials Science, 10(2012):585-597.
Google Scholar
[23]
A. Galiyev, R. Kaibyshev, G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 49 (2001) 1199–1207.
DOI: 10.1016/s1359-6454(01)00020-9
Google Scholar
[24]
G. Garcés, A. Müller, E. Oñorbe, P. Pérez, P. Adeva, Effect of forging on the microstructure and mechanical properties of Mg-Zn-Y alloy. J. Mater. Process. Technol. 206 (2008) 99–105.
DOI: 10.1016/j.jmatprotec.2007.12.014
Google Scholar
[25]
S.W. Xu, K. Oh-Ishi, S. Kamado, F. Uchida, T. Homma, K. Hono, High-strength extruded Mg–Al–Ca–Mn alloy. Scripta Materialia 65 (2011) 269–272.
DOI: 10.1016/j.scriptamat.2011.04.026
Google Scholar
[26]
G. Mann, J. R. Griffiths, C. H. Cáceres, Hall-Petch parameters in tension and compression in cast Mg-2Zn alloys. J. Alloys Compd. 378 (2004) 188–191.
DOI: 10.1016/j.jallcom.2003.12.052
Google Scholar
[27]
N. Ono, R. Nowak, S. Miura, Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium. Mater. Lett. 58 (2003) 39–43.
DOI: 10.1016/s0167-577x(03)00410-5
Google Scholar