Physical Modelling of Charge Trapping Effects in SiC MOSFETs

Article Preview

Abstract:

In the recent past, lots of efforts have been put into further developing SiC power MOSFETs. In addition to optimization of device geometry, i.e., vertical device structure, various post-oxidation anneals have been studied to improve carrier mobility by reducing trap density. Nevertheless, a considerable number of traps remain, which are the central origin for dynamic changes in the threshold voltage of up to several volts during DC and AC operation. To explain the threshold voltage instability, an effective two-state defect model has been recently applied. In this work, we give an overview of modeling efforts to explain the impact of defects on the device threshold voltage and discuss the hysteresis of voltage sweep and bias temperature instabilities in SiC transistors. Based on the combination of measurements and computer simulations, a list of potential defect candidates responsible for the observed threshold voltage instabilities is discussed.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] S. Sridevan et al. "Lateral n-channel inversion mode 4H-SiC MOSFETs". In: IEEE Electron Device Lett. 19.7 (1998), pp.228-230.

DOI: 10.1109/55.701425

Google Scholar

[2] Daniel J. Lichtenwalner et al. "Comparison of channel mobility and oxide properties of MOSFET devices on Si-face (0001) and A-face (11-20) 4H-SiC". In: MRS Proceedings 1693 (2014).

DOI: 10.1557/opl.2014.530

Google Scholar

[3] G. Rescher et al. "Improved Interface Trap Density Close to the Conduction Band Edge of aFace 4H-SiC MOSFETs Revealed Using the Charge Pumping Technique". In: Silicon Carbide and Related Materials 2016. Vol. 897. Materials Science Forum. Trans Tech Publications Ltd, June 2017, pp.143-146.

DOI: 10.4028/www.scientific.net/msf.897.143

Google Scholar

[4] Hui-feng Li et al. "Interfacial characteristics of N2O and NO nitrided SiO2 grown on SiC by rapid thermal processing". In: Appl.Phys.Lett. 70.15 (1997), pp.2028-2030.

DOI: 10.1063/1.118773

Google Scholar

[5] V. V. Afanas'ev et al. "Mechanisms responsible for improvement of 4H-SiC/SiO2 interface properties by nitridation". In: Appl.Phys.Lett. 82.4 (2003), pp.568-570.

DOI: 10.1063/1.1532103

Google Scholar

[6] Judith Berens et al. "NH3 and NO + NH3 Annealing of 4H-SiC Trench MOSFETs: Device Performance and Reliability". In: IEEE Trans. Electron Devices 66.11 (2019), pp.4692-4697.

DOI: 10.1109/ted.2019.2941723

Google Scholar

[7] Eckhard Pippel et al. "Interfaces between 4H-SiC and SiO2: Microstructure, nanochemistry, and near-interface traps". In: J.Appl.Phys. 97.3 (2005), p.034302.

DOI: 10.1063/1.1836004

Google Scholar

[8] G. Y. Chung et al. "Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide". In: Appl.Phys.Lett. 76.13 (2000), pp.1713-1715.[9] Christian Schleich et al. "Physical Modeling of Bias Temperature Instabilities in SiC MOSFETs". In: Proc. Intl. Electron Devices Meeting (IEDM). 2019.

DOI: 10.1063/1.126167

Google Scholar

[10] A. J. Lelis et al. "Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements". In: IEEE Trans. Electron Devices 55.8 (2008), pp.1835-1840.

DOI: 10.1109/ted.2008.926672

Google Scholar

[11] M. Waltl et al. "Performance Analysis of 4H-SiC Pseudo-D CMOS Inverter Circuits Employing Physical Charge Trapping Models". In: Materials Science Forum 1062 (2022), pp.688-695.

DOI: 10.4028/p-pijkeu

Google Scholar

[12] Y. Hernandez et al. "Impact of Bias Temperature Instabilities on the Performance of Logic Inverter Circuits Using Different SiC Transistor Technologies". In: Crystals 11.9 (2021).

DOI: 10.3390/cryst11091150

Google Scholar

[13] G. Rescher et al. "On the subthreshold drain current sweep hysteresis of 4H-SiC nMOSFETs". In: Proc. Intl. Electron Devices Meeting (IEDM). 2016, p.10.8.1-10.8.4.

DOI: 10.1109/iedm.2016.7838392

Google Scholar

[14] Christian Schleich et al. "Single vs. Multi-Step Trap Assisted Tunneling Currents - Part I: Theory". In: IEEE Trans. Electron Devices (2022). in print.

DOI: 10.1109/ted.2022.3185966

Google Scholar

[15] Christian Schleich et al. "Single vs. Multi-Step Trap Assisted Tunneling Currents - Part II: The Role of Polarons". In: IEEE Trans. Electron Devices (2022). in print.

DOI: 10.1109/ted.2022.3185965

Google Scholar

[16] Tibor Grasser. "Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities". In: Microelectronics Reliability 52.1 (2012), pp.39-70.

DOI: 10.1016/j.microrel.2011.09.002

Google Scholar

[17] W. Goes. "Hole Trapping andthe Negative Bias Temperature Instability". Ph.D. Thesis. TU Wien, 2011.

Google Scholar

[18] K. Puschkarsky et al. "Review on SiC MOSFETs High-Voltage Device Reliability Focusing on Threshold Voltage Instability". In: IEEE Trans. Electron Devices 66.11 (2019), pp.4604-4616.

DOI: 10.1109/ted.2019.2938262

Google Scholar

[19] J. P. Campbell et al. "Atomic-scale defects involved in the negative-bias temperature instability". In: IEEE Trans.Dev.Mat.Rel. 7.4 (2007), pp.540-557.

Google Scholar

[20] Gerhard Rzepa et al. "Comphy - A Compact-Physics Framework for Unified Modeling of BTI". In: Microelectronics Reliability 85.1 (2018), pp.49-65.

DOI: 10.1016/j.microrel.2018.04.002

Google Scholar

[21] Jakob Michl et al. "Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental". In: IEEE Trans. Electron Devices 68.12 (2021), pp.6372-6378.

DOI: 10.1109/ted.2021.3117740

Google Scholar

[22] Christian Schleich et al. "Physical Modeling of Charge Trapping in 4H-SiC DMOSFET Technologies". In: IEEE Trans. Electron Devices 68.8 (2021), pp.4016-4021.

DOI: 10.1109/ted.2021.3092295

Google Scholar

[23] Alexander Vasilev et al. "TCAD Modeling of Temperature Activation of the Hysteresis Characteristics of Lateral 4H-SiC MOSFETs". In: IEEE Trans. Electron Devices 69.6 (2022), pp.3290-3295.

DOI: 10.1109/ted.2022.3166123

Google Scholar

[24] B. Kaczer et al. "Ubiquitous relaxation in BTI stressing - New evaluation and insights". In: Proc. Intl. Rel. Phys. Symp. (IRPS). 2008, pp.20-27.

Google Scholar

[25] H. Reisinger et al. "Analysis of NBTI Degradation- and Recovery-Behavior Based on Ultra Fast VT-Measurements". In: Proc. Intl. Rel. Phys. Symp. (IRPS). 2006, pp.448-453.

DOI: 10.1109/relphy.2006.251260

Google Scholar

[26] M. Waltl. "Ultra-Low Noise Defect Probing Instrument for Defect Spectroscopy of MOS Transistors". In: IEEE Trans.Dev.Mat.Rel. 20.2 (2020). invited, pp.242-250.

DOI: 10.1109/tdmr.2020.2988650

Google Scholar

[27] Daniel B. Habersat et al. "Measurement considerations for evaluating BTI effects in SiC MOSFETs". In: Microelectronics Reliability 81 (2018), pp.121-126.

DOI: 10.1016/j.microrel.2017.12.015

Google Scholar

[28] Dominic Waldhoer et al. "Toward Automated Defect Extraction From Bias Temperature Instability Measurements". In: IEEE Trans. Electron Devices 68.8 (2021), pp.4057-4063.

DOI: 10.1109/ted.2021.3091966

Google Scholar

[29] C. Wilhelmer et al. "Statistical Ab-Initio Analysis of Electron Trapping Oxide Defects in the Si/SiO2 Network". In: European Solid-State Device Research Conference (ESSDERC). 2021, pp.243-246.

DOI: 10.1109/essderc53440.2021.9631833

Google Scholar