[1]
C. Lesch, N. Kwiaton, F.B. Klose, Advanced high strength steels (AHSS) for automotive applications − tailored properties by smart microstructural adjustments, Steel Res. Int. 88 (2017) 1700210.
DOI: 10.1002/srin.201700210
Google Scholar
[2]
L.N. López de Lacalle, A. Lamikiz, J. Muñoa, M.A. Salgado, J.A. Sánchez, Improving the high-speed finishing of forming tools for advanced high-strength steels (AHSS), Int. J. Adv. Manuf. Technol. 29 (2006) 49-63.
DOI: 10.1007/s00170-004-2482-z
Google Scholar
[3]
M. Soleimani, A. Kalhor, H. Mirzadeh, Transformation-induced plasticity (TRIP) in advanced steels: a review, Mater. Sci. Eng. A. 795 (2020) 140023.
DOI: 10.1016/j.msea.2020.140023
Google Scholar
[4]
S.G. Karnaukh, O.E. Markov, L.I. Aliieva, V.V. Kukhar, Designing and researching of the equipment for cutting by breaking of rolled stock, Int. J. Adv. Manuf. Technol. 109 (2020) 2457-2464.
DOI: 10.1007/s00170-020-05824-7
Google Scholar
[5]
W. Bleck, X. Guo, Y. Ma, The TRIP effect and its application in cold formable sheet steels, Steel Res. Int. 88 (2017) 1700218.
DOI: 10.1002/srin.201700218
Google Scholar
[6]
V.I. Zurnadzhy, V.G. Efremenko, I. Petryshynets, K. Shimizu, M.N. Brykov, I.V. Kushchenko. V.V. Kudin, Mechanical properties of carbide-free lower bainite in complex-alloyed constructional steel: Effect of bainitizing treatment parameters, Kovove Mater. 58 (2020) 129-140.
DOI: 10.4149/km_2020_2_129
Google Scholar
[7]
W.J. Dan, S.H. Li, W.G. Zhang, Z.Q. Lin, The effect of strain-induced martensitic transformation on mechanical properties of TRIP steel, Mater. Des. 29 (2008) 604-612.
DOI: 10.1016/j.matdes.2007.02.019
Google Scholar
[8]
V.I. Zurnadzhy, V.G. Efremenko, K.M. Wu, I. Petryshynets, K. Shimizu, A.M. Zusin, M.N. Brykov, V.A. Andilakhai, Tailoring strength/ductility combination in 2.5 wt% Si-alloyed middle carbon steel produced by the two-step QP treatment with a prolonged partitioning stage, Mater. Sci. Eng. A. 791 (2020) 139721.
DOI: 10.1016/j.msea.2020.139721
Google Scholar
[9]
M. Franceschi, R. Bertolini, A. Fabrizi, M. Dabalà, L. Pezzato, Effect of ausforming temperature on bainite morphology in a 3.2% Si carbide-free bainitic steel, Mater. Sci. Eng. A. 864(2023) 144553.
DOI: 10.1016/j.msea.2022.144553
Google Scholar
[10]
O. Hesse, J. Merker, M. Brykov, V. Efremenko, Zur Festigkeit niedriglegierter Stäble mit erhöhtem Kohlenstoffgehalt gegen abrasiven Verschleiß [On the strength of low-alloy steels with increased carbon content against abrasive wear], Tribol. Schmierungstech. 60 (2013) 37-43.
Google Scholar
[11]
A. Stelmakh, R. Kostunik, V. Radzievskyi, S. Shymchuk, N. Zaichuk, An increase in tribocharacteristics for highly loaded friction units of modern equipment, in: F. Chaari, F. Gherardini, V. Ivanov (Eds.), Design, Simulation, Manufacturing: The Innovation Exchange, Springer, Cham, 2022, pp.504-518.
DOI: 10.1007/978-3-031-06025-0_50
Google Scholar
[12]
M. Franceschi, C. Soffritti, A. Fortini, L. Pezzato, G. L. Garagnani, M. Dabalà, Evaluation of wear resistance of a novel carbide-free bainitic steel, Tribology International, 2023, Volume 178, Part A, 108071.
DOI: 10.1016/j.triboint.2022.108071
Google Scholar
[13]
B.C. De Cooman, Structure–properties relationship in TRIP steels containing carbide-free bainite, Curr. Opin. Solid State Mater. Sci. 8 (2004) 285-303.
DOI: 10.1016/j.cossms.2004.10.002
Google Scholar
[14]
K. Hausmann, D. Krizan, K. Spiradek-Hahn, A. Pichler, E.Werner, The influence of Nb on transformation behavior and mechanical properties of TRIP-assisted bainitic–ferritic sheet steels, Mater. Sci. Eng. A. 588 (2013) 142-150.
DOI: 10.1016/j.msea.2013.08.023
Google Scholar
[15]
E. Tesser, C. Silva, A. Artigas, A. Monsalve, Effect of carbon content and intercritical annealing on microstructure and mechanical tensile properties in FeCMnSiCr TRIP-assisted steels, Metals. 11 (2021) 1546.
DOI: 10.3390/met11101546
Google Scholar
[16]
E.A. Ariza, M. Masoumi, A.P. Tschiptschin, Improvement of tensile mechanical properties in a TRIP-assisted steel by controlling of crystallographic orientation via HSQ&P processes, Mater. Sci. Eng. A. 713 (2018) 223-233.
DOI: 10.1016/j.msea.2017.12.046
Google Scholar
[17]
M. Franceschi, A. Miotti Bettanini, L. Pezzato, M. Dabalà, P.J. Jacques, Effect of multi-step austempering treatment on the microstructure and mechanical properties of a high silicon carbide-free bainitic steel with bimodal bainite distribution. Metals 11(2021) 2055.
DOI: 10.3390/met11122055
Google Scholar
[18]
N. Zhong, X.D. Wang, L. Wang, Y.H. Rong, Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching–partitioning–tempering process, Mater. Sci. Eng. A. 506 (2009) 111-116.
DOI: 10.1016/j.msea.2008.11.014
Google Scholar
[19]
X.D. Wang, B.X. Huang, L. Wang, Microstructure and mechanical properties of microalloyed high-strength transformation-induced plasticity steels, Metall. Mater. Trans. A. 39 (2008) 1-7.
DOI: 10.1007/s11661-007-9366-4
Google Scholar
[20]
V.G. Efremenko, E.S. Popov, S.O. Kuz'min, O.I. Trufanova, A.V. Efremenko, Introduction of three-stage thermal hardening technology for large diameter grinding balls, Metallurgist. 57 (2014) 849-854.
DOI: 10.1007/s11015-014-9812-7
Google Scholar
[21]
A.D. Koval, V.G. Efremenko, M.N. Brykov, M.I. Andrushchenko, R.A. Kulikovskii, A.V. Efremenko, Principles of development of grinding media with increased wear resistance. Part 2. Optimization of steel composition to suit conditions of operation of grinding media. Journal of Friction and Wear 33 (2012), 153–159.
DOI: 10.3103/s1068366612020079
Google Scholar
[22]
V. Zurnadzhy, V. Efremenko, I. Petryshynets, M. Dabalà, M. Franceschi, K. Wu, F. Kováč, Y. Chabak, V. Puchy, M. Brykov, Alternative approach for the intercritical annealing of (Cr, Mo, V)-alloyed TRIP-assisted steel before austempering, Metals. 12 (2022) 1814.
DOI: 10.3390/met12111814
Google Scholar
[23]
A. Guzmán, A. Monsalve, Effect of bainitic isothermal treatment on the microstructure and mechanical properties of a CMnSiAl TRIP steel, Metals. 12 (2022) 655.
DOI: 10.3390/met12040655
Google Scholar
[24]
Y.L. Ivanytskyj, T.M. Lenkovskiy, Y.V. Molkov, V.V. Kulyk, Z.A. Duriagina, Influence of 65G steel microstructure on crack faces friction factor under mode ii fatigue fracture, Arch. Mater. Sci. Eng. 82 (2016) 49-56.
DOI: 10.5604/01.3001.0009.7103
Google Scholar
[25]
L. Zhao, L. Qian, J. Meng, Q. Zhou, F. Zhang, Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels, Scr. Mater. 112 (2016) 96-100.
DOI: 10.1016/j.scriptamat.2015.09.022
Google Scholar
[26]
J. Sun, Y. Hao, Microstructure development and mechanical properties of quenching and partitioning (Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process, Mater. Sci. Eng. A. 586 (2013) 100-107.
DOI: 10.1016/j.msea.2013.08.021
Google Scholar
[27]
О.V. Sukhova, V.А. Polonskyy, Structure and corrosion of quasicrystalline cast Al–Co–Ni and Al–Fe–Ni alloys in aqueous NaCl solution, East Eur. J. Phys. 3 (2020) 5-10.
DOI: 10.26565/2312-4334-2020-3-01
Google Scholar
[28]
M.O. Vasylyev, S.I. Sidorenko, S.M. Voloshko, T. Ishikawa, Effect of low-energy inert-gas ion bombardment of the metal surface on the oxygen adsorption and oxidation, Usp. Fiz. Met. 17 (2016) 209-228.
DOI: 10.15407/ufm.17.03.209
Google Scholar
[29]
A. Zare, A. Ekrami, Influence of martensite volume fraction on tensile properties of triple phase ferrite–bainite–martensite steels, Mater. Sci. Eng. A. 530 (2011) 440-445.
DOI: 10.1016/j.msea.2011.09.108
Google Scholar
[30]
Y. Zhang, K. Shimizu, X. Yaer, K. Kusumoto, V.G. Efremenko, Erosive wear performance of heat treated multi-component cast iron containing Cr, V, Mn and Ni eroded by alumina spheres at elevated temperatures, Wear. 390-391 (2017) 135-145.
DOI: 10.1016/j.wear.2017.07.017
Google Scholar
[31]
N. Imbirovych, O. Povstyanoy, O. Zaleta, S. Shymchuk, O. Priadko, The influence of synthesis modes on operational properties of oxide ceramic coatings on aluminum alloys, in: F. Chaari, F. Gherardini, V. Ivanov (Eds.), Design, Simulation, Manufacturing: The Innovation Exchange, Springer, Cham, 2021, pp.536-545.
DOI: 10.1007/978-3-030-77719-7_53
Google Scholar
[32]
B. Zhang, L.X. Du, Y. Dong, D.X. Han, H.Y. Wu, F.H. Lu, R.D.K. Misra, Structure-property relationship in novel low carbon hot-rolled TRIP steels via thermo-mechanical controlled processing and coiling, Mater. Sci. Eng. A. 771 (2020) 138643.
DOI: 10.1016/j.msea.2019.138643
Google Scholar