Effect of Austempering Parameters on Microstructure and Tensile/Impact Behaviours of Micro-Alloyed TRIP-Assisted Steel

Article Preview

Abstract:

The article is aimed at studying the effect of austempering temperature below and above Ms temperature on the phase-structural state and mechanical properties of 0.2 wt.% C TRIP-assisted steel micro-added with Nb, V, Mo, Cr. The samples were austenitized at a temperature close to the Ac3 point (900 °C) and held at 300 °C (below Ms), 350 °C (close to Ms) and 400 °C (above Ms) for 5-20 min. The work was performed using optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction, and tensile/impact testing. It was found that austempering at the aforementioned modes ensures the multiphase structure consisting of carbide-free bainite, tempered martensite, ferrite and retained austenite (in different combinations). The optimal was austempering at a temperature close to Ms which provided an advanced complex of tensile properties (PSE of 23.9 GPa×%) and V-notched impact toughness (95 J/cm2). TRIP-effect contributed to these properties while the strain hardening process tended to be prolonged with increasing the austempering temperature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1098)

Pages:

3-12

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Lesch, N. Kwiaton, F.B. Klose, Advanced high strength steels (AHSS) for automotive applications − tailored properties by smart microstructural adjustments, Steel Res. Int. 88 (2017) 1700210.

DOI: 10.1002/srin.201700210

Google Scholar

[2] L.N. López de Lacalle, A. Lamikiz, J. Muñoa, M.A. Salgado, J.A. Sánchez, Improving the high-speed finishing of forming tools for advanced high-strength steels (AHSS), Int. J. Adv. Manuf. Technol. 29 (2006) 49-63.

DOI: 10.1007/s00170-004-2482-z

Google Scholar

[3] M. Soleimani, A. Kalhor, H. Mirzadeh, Transformation-induced plasticity (TRIP) in advanced steels: a review, Mater. Sci. Eng. A. 795 (2020) 140023.

DOI: 10.1016/j.msea.2020.140023

Google Scholar

[4] S.G. Karnaukh, O.E. Markov, L.I. Aliieva, V.V. Kukhar, Designing and researching of the equipment for cutting by breaking of rolled stock, Int. J. Adv. Manuf. Technol. 109 (2020) 2457-2464.

DOI: 10.1007/s00170-020-05824-7

Google Scholar

[5] W. Bleck, X. Guo, Y. Ma, The TRIP effect and its application in cold formable sheet steels, Steel Res. Int. 88 (2017) 1700218.

DOI: 10.1002/srin.201700218

Google Scholar

[6] V.I. Zurnadzhy, V.G. Efremenko, I. Petryshynets, K. Shimizu, M.N. Brykov, I.V. Kushchenko. V.V. Kudin, Mechanical properties of carbide-free lower bainite in complex-alloyed constructional steel: Effect of bainitizing treatment parameters, Kovove Mater. 58 (2020) 129-140.

DOI: 10.4149/km_2020_2_129

Google Scholar

[7] W.J. Dan, S.H. Li, W.G. Zhang, Z.Q. Lin, The effect of strain-induced martensitic transformation on mechanical properties of TRIP steel, Mater. Des. 29 (2008) 604-612.

DOI: 10.1016/j.matdes.2007.02.019

Google Scholar

[8] V.I. Zurnadzhy, V.G. Efremenko, K.M. Wu, I. Petryshynets, K. Shimizu, A.M. Zusin, M.N. Brykov, V.A. Andilakhai, Tailoring strength/ductility combination in 2.5 wt% Si-alloyed middle carbon steel produced by the two-step QP treatment with a prolonged partitioning stage, Mater. Sci. Eng. A. 791 (2020) 139721.

DOI: 10.1016/j.msea.2020.139721

Google Scholar

[9] M. Franceschi, R. Bertolini, A. Fabrizi, M. Dabalà, L. Pezzato, Effect of ausforming temperature on bainite morphology in a 3.2% Si carbide-free bainitic steel, Mater. Sci. Eng. A. 864(2023) 144553.

DOI: 10.1016/j.msea.2022.144553

Google Scholar

[10] O. Hesse, J. Merker, M. Brykov, V. Efremenko, Zur Festigkeit niedriglegierter Stäble mit erhöhtem Kohlenstoffgehalt gegen abrasiven Verschleiß [On the strength of low-alloy steels with increased carbon content against abrasive wear], Tribol. Schmierungstech. 60 (2013) 37-43.

Google Scholar

[11] A. Stelmakh, R. Kostunik, V. Radzievskyi, S. Shymchuk, N. Zaichuk, An increase in tribocharacteristics for highly loaded friction units of modern equipment, in: F. Chaari, F. Gherardini, V. Ivanov (Eds.), Design, Simulation, Manufacturing: The Innovation Exchange, Springer, Cham, 2022, pp.504-518.

DOI: 10.1007/978-3-031-06025-0_50

Google Scholar

[12] M. Franceschi, C. Soffritti, A. Fortini, L. Pezzato, G. L. Garagnani, M. Dabalà, Evaluation of wear resistance of a novel carbide-free bainitic steel, Tribology International, 2023, Volume 178, Part A, 108071.

DOI: 10.1016/j.triboint.2022.108071

Google Scholar

[13] B.C. De Cooman, Structure–properties relationship in TRIP steels containing carbide-free bainite, Curr. Opin. Solid State Mater. Sci. 8 (2004) 285-303.

DOI: 10.1016/j.cossms.2004.10.002

Google Scholar

[14] K. Hausmann, D. Krizan, K. Spiradek-Hahn, A. Pichler, E.Werner, The influence of Nb on transformation behavior and mechanical properties of TRIP-assisted bainitic–ferritic sheet steels, Mater. Sci. Eng. A. 588 (2013) 142-150.

DOI: 10.1016/j.msea.2013.08.023

Google Scholar

[15] E. Tesser, C. Silva, A. Artigas, A. Monsalve, Effect of carbon content and intercritical annealing on microstructure and mechanical tensile properties in FeCMnSiCr TRIP-assisted steels, Metals. 11 (2021) 1546.

DOI: 10.3390/met11101546

Google Scholar

[16] E.A. Ariza, M. Masoumi, A.P. Tschiptschin, Improvement of tensile mechanical properties in a TRIP-assisted steel by controlling of crystallographic orientation via HSQ&P processes, Mater. Sci. Eng. A. 713 (2018) 223-233.

DOI: 10.1016/j.msea.2017.12.046

Google Scholar

[17] M. Franceschi, A. Miotti Bettanini, L. Pezzato, M. Dabalà, P.J. Jacques, Effect of multi-step austempering treatment on the microstructure and mechanical properties of a high silicon carbide-free bainitic steel with bimodal bainite distribution. Metals 11(2021) 2055.

DOI: 10.3390/met11122055

Google Scholar

[18] N. Zhong, X.D. Wang, L. Wang, Y.H. Rong, Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching–partitioning–tempering process, Mater. Sci. Eng. A. 506 (2009) 111-116.

DOI: 10.1016/j.msea.2008.11.014

Google Scholar

[19] X.D. Wang, B.X. Huang, L. Wang, Microstructure and mechanical properties of microalloyed high-strength transformation-induced plasticity steels, Metall. Mater. Trans. A. 39 (2008) 1-7.

DOI: 10.1007/s11661-007-9366-4

Google Scholar

[20] V.G. Efremenko, E.S. Popov, S.O. Kuz'min, O.I. Trufanova, A.V. Efremenko, Introduction of three-stage thermal hardening technology for large diameter grinding balls, Metallurgist. 57 (2014) 849-854.

DOI: 10.1007/s11015-014-9812-7

Google Scholar

[21] A.D. Koval, V.G. Efremenko, M.N.  Brykov, M.I. Andrushchenko, R.A. Kulikovskii, A.V. Efremenko, Principles of development of grinding media with increased wear resistance. Part 2. Optimization of steel composition to suit conditions of operation of grinding media. Journal of Friction and Wear 33 (2012), 153–159.

DOI: 10.3103/s1068366612020079

Google Scholar

[22] V. Zurnadzhy, V. Efremenko, I. Petryshynets, M. Dabalà, M. Franceschi, K. Wu, F. Kováč, Y. Chabak, V. Puchy, M. Brykov, Alternative approach for the intercritical annealing of (Cr, Mo, V)-alloyed TRIP-assisted steel before austempering, Metals. 12 (2022) 1814.

DOI: 10.3390/met12111814

Google Scholar

[23] A. Guzmán, A. Monsalve, Effect of bainitic isothermal treatment on the microstructure and mechanical properties of a CMnSiAl TRIP steel, Metals. 12 (2022) 655.

DOI: 10.3390/met12040655

Google Scholar

[24] Y.L. Ivanytskyj, T.M. Lenkovskiy, Y.V. Molkov, V.V. Kulyk, Z.A. Duriagina, Influence of 65G steel microstructure on crack faces friction factor under mode ii fatigue fracture, Arch. Mater. Sci. Eng. 82 (2016) 49-56.

DOI: 10.5604/01.3001.0009.7103

Google Scholar

[25] L. Zhao, L. Qian, J. Meng, Q. Zhou, F. Zhang, Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels, Scr. Mater. 112 (2016) 96-100.

DOI: 10.1016/j.scriptamat.2015.09.022

Google Scholar

[26] J. Sun, Y. Hao, Microstructure development and mechanical properties of quenching and partitioning (Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process, Mater. Sci. Eng. A. 586 (2013) 100-107.

DOI: 10.1016/j.msea.2013.08.021

Google Scholar

[27] О.V. Sukhova, V.А. Polonskyy, Structure and corrosion of quasicrystalline cast Al–Co–Ni and Al–Fe–Ni alloys in aqueous NaCl solution, East Eur. J. Phys. 3 (2020) 5-10.

DOI: 10.26565/2312-4334-2020-3-01

Google Scholar

[28] M.O. Vasylyev, S.I. Sidorenko, S.M. Voloshko, T. Ishikawa, Effect of low-energy inert-gas ion bombardment of the metal surface on the oxygen adsorption and oxidation, Usp. Fiz. Met. 17 (2016) 209-228.

DOI: 10.15407/ufm.17.03.209

Google Scholar

[29] A. Zare, A. Ekrami, Influence of martensite volume fraction on tensile properties of triple phase ferrite–bainite–martensite steels, Mater. Sci. Eng. A. 530 (2011) 440-445.

DOI: 10.1016/j.msea.2011.09.108

Google Scholar

[30] Y. Zhang, K. Shimizu, X. Yaer, K. Kusumoto, V.G. Efremenko, Erosive wear performance of heat treated multi-component cast iron containing Cr, V, Mn and Ni eroded by alumina spheres at elevated temperatures, Wear. 390-391 (2017) 135-145.

DOI: 10.1016/j.wear.2017.07.017

Google Scholar

[31] N. Imbirovych, O. Povstyanoy, O. Zaleta, S. Shymchuk, O. Priadko, The influence of synthesis modes on operational properties of oxide ceramic coatings on aluminum alloys, in: F. Chaari, F. Gherardini, V. Ivanov (Eds.), Design, Simulation, Manufacturing: The Innovation Exchange, Springer, Cham, 2021, pp.536-545.

DOI: 10.1007/978-3-030-77719-7_53

Google Scholar

[32] B. Zhang, L.X. Du, Y. Dong, D.X. Han, H.Y. Wu, F.H. Lu, R.D.K. Misra, Structure-property relationship in novel low carbon hot-rolled TRIP steels via thermo-mechanical controlled processing and coiling, Mater. Sci. Eng. A. 771 (2020) 138643.

DOI: 10.1016/j.msea.2019.138643

Google Scholar