Influence of Reinforcing nano-Al2O3 Particles on Microstructure and Hardness Properties of HVOF Sprayed 80Ni20Cr Coatings

Article Preview

Abstract:

80Ni20Cr coatings produced by high-velocity oxygen fuel (HVOF) thermal spray technique are novel and widely used to improve the corrosion and wear resistance of metal and steel components in many applications, especially in coal-fired power plants. The present study investigated the effects of nano-Al2O3 at 0.5 wt.% on the microstructure of HVOF-sprayed 80Ni20Cr coating deposited on AISI 304L steels corresponding to its coating hardness. The coating was successfully sprayed with a thickness of 150 – 180 µm. The microstructure and phase formed by the coating were analyzed by a field emission electron microscope (FE-SEM) and an X-ray diffractometer (XRD). Synchrotron X-ray fluorescence spectroscopy (SRXRF) was used to confirm the Cr solid solution in the Ni-based coating. The presence of the nano-Al2O3 phase in the 80Ni20Cr coating was characterized by electron backscattered diffraction (EBSD). The nano-Al2O3 particles were homogenously distributed in the coating layers. The incorporation of nano-Al2O3 into 80Ni20Cr enhanced coating characteristics by decreasing surface roughness by 23% and increasing coating hardness by around 4%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1125)

Pages:

11-17

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kawahara: Coatings Vol. 6 (2016), p.34

Google Scholar

[2] S. Pokwitidkul, P. Treewiriyakitja, P. Thongyoug, N. Kiatisereekul, N. Kanjanaprayut and J. Tungtrongpairoj: Mater. Today: Proc Vol. 77 (2023), pp.1100-1105

DOI: 10.1016/j.matpr.2022.11.395

Google Scholar

[3] M. Kaur, H. Singh and S. Prakash: Surf. Coat. Technol. Vol. 206 (2011), pp.530-541

Google Scholar

[4] D. Wu, Z. Yuan, S. Liu, J. Zheng, X. Wei and C. Zhang: Coatings Vol. 10 (2020). p.1001

Google Scholar

[5] J. R. Davis: Ed. Handbook of thermal spray technology (ASM International 2004).

Google Scholar

[6] N. Espallargas: Introduction to thermal spray coatings In Future Development of Thermal Spray Coatings (Woodhead Publishing 2015).

DOI: 10.1016/b978-0-85709-769-9.00001-4

Google Scholar

[7] F. Ghadami, A. Zakeri, A. S. R. Aghdam and R. Tahmasebi: Surf. Coat. Technol. Vol. 373 (2019), pp.7-16

Google Scholar

[8] F. Ghadami, A. S. R. Aghdam, A. Zakeri, B. Saeedi and P. Tahvili: Ceram. Int. Vol. 46 (2020), pp.4556-4567

Google Scholar

[9] H. Edris, D. McCartney and A. Sturgeon: J. Mater. Sci. Vol. 32 (1997), p.863–872

Google Scholar

[10] T. Hussain, T. Dudziak, N. Simms and J. Nicholls: J. Therm. Spray Technol. Vol. 22 (2013), p.797–807

Google Scholar

[11] M. Bai, L. Reddy and T. Hussain: Corros. Sci. Vol. 135 (2018), pp.147-157

Google Scholar

[12] N. Bala, H. Singh and S. Prakash: Metall. Mater. Trans. A: Phys. Vol 42(2011), pp.3399-3416

Google Scholar

[13] N. Bala, H. Singh and S. Prakash: Mater. Des. Vol. 31 (2010), pp.244-253

Google Scholar

[14] H. Ruiz-Luna, J. Porcayo-Calderon, J. M. Alvarado-Orozco, A. G. Mora-García, L. Martinez-Gomez, L. G. Trápaga-Martínez and J. Muñoz-Saldaña: Influence of oxidation treatments and surface finishing on the electrochemical behavior of Ni-20Cr HVOF coatings. J. Mater. Eng. Perform. Vol. 26 (2017), pp.6064-6074

DOI: 10.1007/s11665-017-3048-1

Google Scholar

[15] C. Wagner: J. Electrochem. Soc. Vol. 99 (1952), p.369

Google Scholar

[16] C. Quan, S. Deng, Y. Jiang, C. Jiang and M. Shuai: J. Alloys Compd. Vol. 793 (2019), P. 170-178

Google Scholar

[17] A. A. Mohammed, Z. T. Khodair and A. A. Khadom: Ceram. Int. Vol. 46 (2020), pp.26945-26955

Google Scholar

[18] L. Zhao, J. Zwick and E. Lugscheider: Surf. Coat. Technol. Vol. 182 (2004), pp.72-77

Google Scholar

[19] H. Vasudev, L. Thakur, H. Singh, and A. Bansal, Mater. Today Commun. Vol. 25 (2020), p.101626

Google Scholar

[20] A. S. Praveen and A. Arjunan: Mater. Res. Express Vol. 7 (2019), p.015006

Google Scholar

[21] P. Fauchais and A. Vardelle: Advanced plasma spray applications Vol. 10(2012), p.34448

Google Scholar

[22] H. Herman: MRS Bull. Vol. 13 (1988), pp.60-67

Google Scholar

[23] H. Herman and S. Sampath, in: Thermal spray coatings. In Metallurgical and ceramic protective coatings, edited by Kurt H. Stern Publishing, Springer, Dordrecht, Netherlands (1996).

DOI: 10.1007/978-94-009-1501-5_10

Google Scholar

[24] A.S.M. Ang and C.C. Berndt: Int. Mater. Rev. Vol. 59 (2014), pp.179-223

Google Scholar

[25] E. Sadeghi, N. Markocsan and S. Joshi: J. Therm. Spray. Tech. Vol. 28 (2019), p.1749–1788

Google Scholar

[26] V. Petley, S. Sathishkumar, K.H. Thulasi Raman, G. Rao and U. Chandrasekhar: Mater. Res. Bull. Vol. 66 (2015), p.59–64

Google Scholar

[27] S. Petrovic, N. Bundaleski, M. Radovic, Z. Ristic, G. Gliorie, D. Perusko and S. Zee: Sci. Sinter. Vol. 38 (2006), p.155

DOI: 10.2298/sos0602155p

Google Scholar

[28] G. Prashar and H. Vasudev: Surf. Coat. Technol. Vol. 475 (2023), p.130156.

Google Scholar