Structure, Magnetic and Magnetocaloric Properties of Attempted P Substitutions in LaFe11.5Si1.5 Giant Magnetocaloric Material

Article Preview

Abstract:

Recent theoretical and experimental studies suggested that P can enter the structure of La(Fe,Si)13 alloys and lead to a significant enhancement of the isothermal entropy change, one of the two main quantities characterizing the magnetocaloric effect. Here, we report a systematic study of P for Si substitutions in La(Fe,Si)13 alloys. Eight LaFe11.5Si1.5-xPx polycrystalline bulk samples with 0 ≤ x ≤ 0.2 were prepared by arc-melting followed by heat treatment. Powder x-ray diffraction and SEM/EDX analyses show that the α-Fe secondary phase progressively increases with the increase in P substitutions and that a La-rich LaP secondary phase appears. We therefore found that P does not actually enter the main La(Fe,Si)13 phase. Magnetization and DSC measurements confirm this interpretation as the Curie temperatures of La(Fe,Si,P)13 alloys are nearly insensitive to P for Si substitutions and the latent heat of the first-order ferromagnetic transition decreases with the increase in nominal P substitutions. Our work put into questions former reports of the literature on P addition in La(Fe,Si)13 and highlights the particularly complex synthesis of these alloys.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1125)

Pages:

21-28

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.A. Gschneidner, V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials, Rep. Prog. Phys. 68 (2005) 1479.

DOI: 10.1088/0034-4885/68/6/r04

Google Scholar

[2] A. Smith, C.R.H. Bahl, R. Bjørk, K. Engelbrecht, K.K. Nielsen, N. Pryds, Materials Challenges for High Performance Magnetocaloric Refrigeration Devices, Adv. Energy Mater. 2 (2012) 1288.

DOI: 10.1002/aenm.201200167

Google Scholar

[3] V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, A. Conde, Magnetocaloric effect: From materials research to refrigeration devices, Progress in Materials Science 93 (2018) 112.

DOI: 10.1016/j.pmatsci.2017.10.005

Google Scholar

[4] F.Guillou, A.K. Pathak, D. Paudyal, Y. Mudryk, F. Wilhelm, A. Rogalev, V.K. Pecharsky, Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect, Nat. Commun. 9 (2018) 2925.

DOI: 10.1038/s41467-018-05268-4

Google Scholar

[5] V.K. Pecharsky, K.A. Gschneidner Jr., Giant magnetocaloric effect in Gd5(Si2Ge2), Phys. Rev. Lett. 78 (1997) 4494.

DOI: 10.1016/s0304-8853(96)00759-7

Google Scholar

[6] H. Wada, Y. Tanabe, Giant magnetocaloric effect of MnAs1−xSbx, Appl. Phys. Lett. 79 (2001) 3302–3304.

DOI: 10.1063/1.1419048

Google Scholar

[7] N. T. Trung, L. Zhang, L. Caron, K. H. J. Buschow, E. Brück, Giant magnetocaloric effects by tailoring the phase transitions, J. Appl. Phys. Lett. 96 (2010) 172540.

DOI: 10.1063/1.3399773

Google Scholar

[8] F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, G. H. Rao, X. X. Zhang, Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6, Appl. Phys. Lett. 78 (2001) 3675–3677.

DOI: 10.1063/1.1375836

Google Scholar

[9] A. Fujita, S. Fujieda, Y. Hasegawa, K. Fukamichi, Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides, Phys. Rev. B 67 (2003) 104416.

DOI: 10.1063/1.1498148

Google Scholar

[10] O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature 415 (2002) 150–152.

DOI: 10.1038/415150a

Google Scholar

[11] F. Guillou, G. Porcari, H. Yibole, N. van Dijk, E. Brück, Taming the first order transition in giant magnetocaloric materials. Adv. Mater. 26 (2014) 2671–2675.

DOI: 10.1002/adma.201304788

Google Scholar

[12] A. Fujita; Y. Akamatsu; K. Fukamichi, Itinerant electron metamagnetic transition in La(FexSi1-x)13 intermetallic compounds, J. Appl. Phys. 85 (1999) 4756–4758.

DOI: 10.1063/1.370471

Google Scholar

[13] A. Fujita, S. Fujieda, K. Fukamichi, H. Mitamura, T. Goto, Itinerant-electron metamagnetic transition and large magnetovolume effects in La(FexSi1-x)13 compounds, Phys. Rev. B 65 (2001) 014410.

DOI: 10.1063/1.1498148

Google Scholar

[14] M. Jasinski, J. Liu, S. Jacobs, C. Zimm, La(Fe,Co,Si)13 bulk alloys and ribbons with high temperature magnetocaloric effect, J. Appl. Phys. 107 (2010) 09A953.

DOI: 10.1063/1.3335892

Google Scholar

[15] P. Jin, Y. Li, Y. Dai, Z. Xu, C. Song, Z. Luo, Q. Zhai, K. Han, H. Zheng, Zn and P Alloying Effect in Sub-Rapidly Solidified LaFe11.6Si1.4 Magnetocaloric Plates, Metals 9 (2019) 432.

DOI: 10.3390/met9040432

Google Scholar

[16] J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B: Condens. Matter 192 (1993) 55–69.

DOI: 10.1016/0921-4526(93)90108-i

Google Scholar

[17] K. Niitsu, S. Fujieda, A. Fujita, R. Kainuma, Microstructure and magnetic properties of as-quenched cubic and tetragonal La(Fe1-xSix)13 compounds, J. Alloys Compd. 578 (2013) 220–227.

DOI: 10.1016/j.jallcom.2013.05.059

Google Scholar

[18] M. Kuepferling, C. Bennati, F. Laviano, G. Ghigo, and V. Basso, Dynamics of the magneto structural phase transition in La(Fe0.9Co0.015Si0.085)13 observed by magneto-optical imaging, J. Appl. Phys. 115 (2014) 17A925.

DOI: 10.1063/1.4866880

Google Scholar

[19] C. Bennati, L. Gozzelino, E. S. Olivetti, and V. Basso, Heterogeneous nucleation and heat flux avalanches in La(Fe,Si)13 magnetocaloric compounds near the critical point, Appl. Phys. Lett. 109 (2016) 231904.

DOI: 10.1063/1.4971360

Google Scholar

[20] A. M. G. Carvalho, A.A. Coelho, P.J. von Ranke, C.S. Alves, The isothermal variation of the entropy (ΔST) may be miscalculated from magnetization isotherms in some cases: MnAs and Gd5Ge2Si2 compounds as examples, J. Alloys Compd. 509 (2011) 3452–3456.

DOI: 10.1016/j.jallcom.2010.12.088

Google Scholar

[21] V. Paul-Boncour, L. Bessais, Tuning the Magnetocaloric Properties of the La(Fe,Si)13 Compounds by Chemical Substitution and Light Element Insertion, Magnetochemistry 7(2021) 13.

DOI: 10.3390/magnetochemistry7010013

Google Scholar