Preparation and Characterization of Black Phosphene/Titanium Dioxide Composite Nanomaterials by Liquid-Stripping and Solution Mixing Method

Article Preview

Abstract:

In this study, black phosphorus (BP) was prepared via the high-energy ball milling method, and two-dimensional (2D) BP was further fabricated using the liquid-phase stripping approach. Nano TiO2 was synthesized via the sol-gel method, and it was combined with black phosphene through N, N-dimethylformamide (DMF) medium by a straightforward solution mixing process to produce BP/ TiO2 composite photocatalyst. Subsequently, spectrophotometric analysis, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM) were conducted. The band gap of BP was calculated using the Tauc plot method. The results revealed that the values are 1.06 eV and 1.23 eV, corresponding to the band gap emissions of four-and three-layer BP band gap emission, indicating the successful preparation of few layers of black phosphorus. The HRTEM analysis demonstrated that the BP/ TiO2 composite photocatalyst formed a relatively stable crystalline state.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1125)

Pages:

41-49

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Xia, Two-dimensional material nanophotonics, Nat Photon, 8 (2014) 899.

Google Scholar

[2] L. Cartz, S. R. Srinivasa, R. J. Riedner, Effect of pressure on bonding in black phosphorus, J Chem Phys, 71(1979) 1718.

DOI: 10.1063/1.438523

Google Scholar

[3] H. Liu, A. T. Neal, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8 (2014) 4033.

DOI: 10.1021/nn501226z

Google Scholar

[4] J. Qiao, X. Kong, Z. X. Hu, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat Commun, 5 (2014) 4475.

DOI: 10.1038/ncomms5475

Google Scholar

[5] L. Li, Y. Yu, G.J. Ye, Black phosphorus field-effect transistors, Nat Nanotechnol, 9 (2014) 372.

Google Scholar

[6] V. Tran, R. Soklaski, Y. Liang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus, Phys Rev B, 89 (2014) 817.

DOI: 10.1103/physrevb.89.235319

Google Scholar

[7] X. Wang, A. M. Jones, K. L. Seyler, Highly anisotropic and robust excitons in monolayer black phosphorus, Nat Nanotechnol, 10 (2014) 517.

Google Scholar

[8] S.P. Koenig, R. A. Doganov, H. Schmidt, Electric field effect in ultrathin black phosphorus, Appl Phys Lett, 104 (2014) 103106.

Google Scholar

[9] Y.X. Deng, Z. Luo, N.J. Conrad, Black phosphorus monolayer MoS2 van der waals heterojunction p-n diode, ACS Nano, 8 (2014) 8292.

DOI: 10.1021/nn5027388

Google Scholar

[10] Q. Jiang, L. Xu, N. Chen, Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction, Angew. Chem. Int. Ed., 55 (2016) 13849-13853.

DOI: 10.1002/anie.201607393

Google Scholar

[11] C. Hao, B. Yang, F. Wen, Flexible all-solid-state supercapacitors based on liquid-exfoliated back-phosphorus nanoflakes, Adv Mater, 28 (2016) 3194.

DOI: 10.1002/adma.201505730

Google Scholar

[12] L. Kong, Z. Qin, G. Xie, Black phosphorus as broadband saturable absorber for pulsed lasers from 1μm to 2.7μm wavelength, Laser Phys Lett, 13 (2016) 045801.

DOI: 10.1088/1612-2011/13/4/045801

Google Scholar

[13] W. Tao, X. Zhu, X. Yu, Black phosphorus nanosheets as robust delivery platform for cancer theranostics, Adv Mater, 29 (2017) 1603276.

Google Scholar

[14] Q. Lu, Y. Yu, Q. Ma, 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions, Advance Material, 28 (2016) 1917-1933.

DOI: 10.1002/adma.201503270

Google Scholar

[15] N.R. Khalid, E. Ahmed, Z. Hong, Enhanced photocatalytic activity of graphene–TiO2 composite under visible light irradiation, Current Applied Physics, 13 (2013) 659-663.

DOI: 10.1016/j.cap.2012.11.003

Google Scholar

[16] S.D. Perera, R.G. Mariano, K. Vu, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catalysis, 2 (2012) 949-956.

DOI: 10.1021/cs200621c

Google Scholar

[17] D. J. Perello, S. H. Chae, S. Song, High-performance N-type black phosphorus transistors with type control via thickness and contact-metal engineering, Nature Communications, 6 (2015) 7809.

DOI: 10.1038/ncomms8809

Google Scholar

[18] D. O. Scanlon, C. W. Dunnill, J. Buckeridge, Band alignment of rutile and anatase TiO2, Nature Material, 12 (2013) 798-801.

Google Scholar

[19] H.U. Lee, S. C. Lee, J. Won, Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts, Scientific Report, 5 (2015) 8691.

DOI: 10.1038/srep08691

Google Scholar

[20] T. Wu, J. Fan, Q. Li, Palladium nanoparticles anchored on anatase titanium dioxide-black phosphorus hybrids with heterointerfaces: highly electroactive and durable catalysts for ethanol electrooxidation, Advanced Energy Materials, 8 (2018) 1701799.

DOI: 10.1002/aenm.201701799

Google Scholar

[21] X. Li, F. Li, X. Lu, Black phosphorus quantum dots/attapulgite nanocomposite with enhanced photocatalytic performance, Functional Materials Letters, 10 (2017) 1750078.

DOI: 10.1142/s1793604717500783

Google Scholar

[22] M. Zhu, X. Cai, M. Fujitsuka, Au/La2Ti2O7 nanostructures sensitized with black phosphorous for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light, Angewandte Chemie International Edition, 56 (2017) 2064.

DOI: 10.1002/anie.201612315

Google Scholar

[23] V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, Liquid exfoliation of layered materials, Science, 340 (2013) 1226419.

DOI: 10.1126/science.1226419

Google Scholar

[24] X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and Applications, Chemical Society Reviews, 42 (2013) 1934-1946.

DOI: 10.1039/c2cs35387c

Google Scholar

[25] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides , Nature nanotechnology, 7 (2012) 699-712.

DOI: 10.1038/nnano.2012.193

Google Scholar

[26] T. Bao, T. Ojiyed, Hasichaolu, J. Ning, Narengerile, Preparation of black phosphorus by the mechanical ball milling method and its characterization, Solid state phenomena, 271 (2018) 18-22.

DOI: 10.4028/www.scientific.net/ssp.271.18

Google Scholar

[27] T. Bao, A. Bolag, X. Tian, T. Ojiyed, Synthesis of black phosphorene/P-rich transition metal phosphide NiP3 heterostructure and its effect on the stabilization of black phosphorene, Crystals, 13 (2023) 1571.

DOI: 10.3390/cryst13111571

Google Scholar

[28] H. P. Klug, L. E. Alexander. X-ray diffraction procedures for poly-crystalline and amorphous materials[M]. NewYork : Willey, 1974.

Google Scholar

[29] V. Tran, R. Soklaski, Y. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89 (2014) 235319-1-6.

DOI: 10.1103/physrevb.89.235319

Google Scholar

[30] G. W. Zhang, S. Y. Huang, A. Chaves, C. Y. Song, V. Ongun Özçelik, T. Low, H. G. Yan, Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 8 (2017) 14071-1-9.

DOI: 10.1038/ncomms14071

Google Scholar

[31] P.Yasaei, B. Kumar, T. Foroozan, C. H. Wang, M. Asadi, D. Tuschel, J. Ernesto Indacochea, R. F. Klie, A. Salehi-Khojin, High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27 (2015) 1887-1892.

DOI: 10.1002/adma.201405150

Google Scholar