Producing Animal Originated Charcoal Production and its Characterization Analysis Compared to Brown Coal

Article Preview

Abstract:

On place research was conducted on a farm where cows were fed by a mixture of traditional pasturing and feed supply. Pyrolysis was carried out directly on the farm to produce a ready-to-use biochar product. The product of biochar after pyrolysis was mixed with an organic adhesive dopant into 100 gram processed products for commercial use. This processed product was analyzed by elemental analysis, proximate analysis, TGA, FTIR and electron paramagnetic resonance spectroscopy. Data from these analyses was compared to those of brown coal Aduunchuluun, which is originally from the same place as the bio waste. Heavy elements content in biochar such as silicon, aluminium, sulphur, etc. is significantly less than compared to the brown coal. TGA and DTG analysis on the biochar product showed a total weight loss of 0.87%, where nearly 0.26% of the moisture was released in the temperature interval of 30 - 300°C, 0.46% of devolatilization occurred in 300 - 600°C, and 0.15% of mass loss in combustion reaction in 600 - 700°C. The residue after the thermal processing was minimal and consisted of hemicellulose and cellulose after volatilization. From the FTIR analysis, we see a disappearance of hydroxyl group vibration around 3400 cm-1 and carbonyl C=O stretching 1733 cm-1 from the biochar product compared to brown coal. The aromatic absorption near 1600 cm-1 is shifted to 1392 cm-1 in biochar. EPR spectrum of bio product consists of two lines, broad and narrow in the resonance field of ≈ 3500 Gs. Corresponding g-factor of narrow line and broad line 2.0022. It is calculated the spin numbers in biochar sample, that is compared to brown coal related data.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Jianlong Wang, Shizong Wang, Journal of Cleaner Production. 227 (2019) 1002-1022

DOI: 10.1016/j.jclepro.2019.04.282

Google Scholar

[2] Mengshan Lee, Yi-Li Lin, Pei-Te Chiueh, Walter Den, Journal of Cleaner Production. 251 (2020) 119714

DOI: 10.1016/j.jclepro.2019.119714

Google Scholar

[3] Masjuki Hj. Hassan, Md. Abul Kalam, Procedia Engineering. 56 (2013) 39-53

DOI: 10.1016/j.proeng.2013.03.087

Google Scholar

[4] Quicker P, Biokohle Weber K. Herstellung, Eigenschaften und Verwendung von Biomassekarbonisaten. Wiesbaden: Springer Vieweg; 2017, p.463.

DOI: 10.1007/978-3-658-03689-8_4

Google Scholar

[5] Hwai Chyuan Ong, Wei-Hsin Chen, Yashvir Singh, Yong Yang Gan, Chia- Yang Chen, Energy Conversion and Management. 209 (2020) 112634

DOI: 10.1016/j.enconman.2020.112634

Google Scholar

[6] Lehmann, J. A handful of carbon. Nature 447 (2007) 143-144

DOI: 10.1038/447143a

Google Scholar

[7] Dugarjav Jigjidsuren. Smogless biochar technology, Report of Science and Technology Foundation, 2010 (in mongolian)

Google Scholar

[8] Kathrin Weber, Peter Quicker, Fuel, 217 (2018) 240-261

DOI: 10.1016/j.fuel.2017.12.054

Google Scholar

[9] Tara Allohverdi, Amar Kumar Mohanty, Poritosh Roy, Manjusri Misra, Molecules. 26 (2021) 5584

DOI: 10.3390/molecules26185584

Google Scholar

[10] Jiali Guo, Lei Zheng, Zifu Li, Xiaoqin Zhou, Shikun Cheng, Lingling Zhang, Qiang Zhang, Journal of Cleaner Production. 311 (2021) 127458

DOI: 10.1016/j.jclepro.2021.127458

Google Scholar

[11] G. Pahla, T. A. Mamvura, F. Ntuli, E. Muzend, South African Journal of Chemical Engineering. 24 (2017) 168-175

DOI: 10.1016/j.sajce.2017.10.004

Google Scholar

[12] X.Yuan, T. He, H. Cao, Q. Yuan, Renew.Energy. 107 (2017) 489-496.

DOI: 10.1016/j.renene.2017.02.026

Google Scholar

[13] Hagemann, N., Joseph, S., Schmidt, H.P., Kammann, C.I., Harter, J., Borch, T., et al., Nat. Commun. 8 (2017) 1089.

DOI: 10.1038/s41467-017-01123-0

Google Scholar

[14] J. Zhang, J. Liu, F. Evrendilek, W. Xie, J. Kuo, X. Zhang, M. Buyukada, Appl. Therm. Eng. 149 (2019) 119-131.

DOI: 10.1016/j.applthermaleng.2018.12.010

Google Scholar

[15] Y. Xu, B. Chen, Bioresour. Technol. 146 (2013) 485-493.

DOI: 10.1016/j.biortech.2013.07.086

Google Scholar

[16] Muhammad Ashraf, Naveed Ramzan, Rafi Ullah Khan, Abdullah Khan Durrani, Case Studies in Thermal Engineering. 26 (2021) 101078

DOI: 10.1016/j.csite.2021.101078

Google Scholar

[17] Simeng Li, Gang Chen, Waste Management. 78 (2018) 198-207

DOI: 10.1016/j.wasman.2018.05.048

Google Scholar

[18] Vamsee Pasangulapati, Karthikeyan D. Ramachandriya, Ajay Kumar, Mark R. Wilkins, Carol L. Jones, Raymond L. Huhnke, Bioresource Technology. 114 (2012) 663-669

DOI: 10.1016/j.biortech.2012.03.036

Google Scholar

[19] Huhnke, R.L., Bioresource Technology. 114 (2012) 663-669

DOI: 10.1021/es9031419

Google Scholar

[20] Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., Environmental Science and Technology. 44 (2010) 1247-1253.

Google Scholar

[21] Qiguo Yi, Fangjie Qi, Gong Cheng, Yongguang Zhang, Bo Xiao, Zhiquan Hu, Shiming Liu, Haiyan Cai, Shan Xu, J Therm Anal Calorim. 112 (2013) 1475-1479. DOI 10.1007/s10973-012- 2744-1

DOI: 10.1007/s10973-012-2744-1

Google Scholar

[22] Wang, L.; Ok, Y.S.; Tsang, D.C.W.; Alessi, D.; Rinklebe, J.; Wang, H.; Ma¨ek, O.; Hou, R.; O'Connor, D.; Hou, D. Soil Use Manag. 36 (2020) 358-386.

DOI: 10.1111/sum.12592

Google Scholar

[23] Jamal Shaheen, Yohanna Haile Fseha, Banu Sizirici. Heliyon. 8(12) (2022) E12388

DOI: 10.1016/j.heliyon.2022.e12388

Google Scholar

[24] S. Munkhtsetseg. Proceedings of the workshop on investigations and application of carbon and carbon containing compounds, Belarusian State University and Mongolian National University Joint Conference, Ulaanbaatar, Mongolia, (2008) 48-52.

Google Scholar

[25] Ariunaa Alyeksandr, Zongqing Bai, Jin Bai, Narangerel Janchig, Purevsuren Batnasan, Zhihao Feng, Ranran Hou, Chong He, Carbon Resources Conversion. 4 (2021) 19-27

DOI: 10.1016/j.crcon.2021.01.005

Google Scholar

[26] S. Jargalmaa, G. Tsatsral, M. Battsetseg, D. Batkhishig, A. Ankhtuya, J. Namkhainorov, B. Bat-Ulzii, B. Purevsuren, B. Avid, Mong. J. Chem., 18(44) (2017) 20-23

DOI: 10.5564/mjc.v18i44.933

Google Scholar

[27] Zhongqing Ma, Youyou Yang, Youlong Wu, Jiajia Xu, Hehuan Peng, Xiaohuan Liu, Wenbiao Zhang, Shurong Wang, Journal of Analytical and Applied Pyrolysis, 140 (2019) 195-204

DOI: 10.1016/j.jaap.2019.03.015

Google Scholar

[28] Haiping Yang, Rong Yan, Hanping Chen, Dong Ho Lee, Chuguang Zheng, Fuel, 86(12-13) (2007) 1781-1788

DOI: 10.1016/j.fuel.2006.12.013

Google Scholar

[29] Ashworth et al., 2014; H. Cao, Y. Xin, D. Wang, Q. Yuan, Bioresour. Technol. 172 (2014) 219- 225.

DOI: 10.1016/j.biortech.2014.09.049

Google Scholar

[30] Tze'ela Taub, Sharon Ruthstein, Haim Cohen, Phys.Chem.Chem.Phys. 20 (2018) 27025

DOI: 10.1039/c8cp04098b

Google Scholar