Lignocellulose Composition of Preparation of Porous Carbon Materials and CO2 Adsorption Performance Research

Article Preview

Abstract:

Porous carbon material adsorbents are one of the effective methods for carbon dioxide (CO2) capture and storage (CCS). In order to realize its application, it is urgent to find economical and efficient raw materials for preparing porous carbon materials. In this study, porous carbon materials were successfully prepared using lignocellulosic components as a carbon source and a mild Kac adsorbent. The CO2 adsorption performance of these materials was then tested. LCH-1 exhibited excellent CO2 adsorption performance and stability in all samples. The microporosity of LCH-1 is as high as 84.48%, and its CO2 adsorption capacity under 1 bar at 273K and 298K is 4.94 mmol/g and 3.31 mmol/g, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1125)

Pages:

71-83

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.P. Kong, J. Liu. Nitrogen-decorated, porous carbons derived from waste cow manure as efficient catalysts for the selective capture and conversion of CO2, RSC Adv.2019,9(9).

DOI: 10.1039/c8ra10497b

Google Scholar

[2] M. Oschatz, M. Antonietti. A search for selectivity to enable CO2 capture with porous adsorbents, Energy Environ.Sci,2018,11(1).

DOI: 10.1039/c7ee02110k

Google Scholar

[3] S. Park, S.M. Choi, S.H. Park. Nitrogen-doped nanoporous carbons derived from lignin for high CO2 capacity, Carbon Lett,2019,29(3).

DOI: 10.1007/s42823-019-00025-z

Google Scholar

[4] R. Wu, A Bao. Preparation of cellulose carbon material from cow dung and its CO2 adsorption performance, J.CO2 Util,2023,68.

DOI: 10.1016/j.jcou.2022.102377

Google Scholar

[5] P. Kumar, D.M. Barrett, M.J. Delwiche, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Ind. Eng. Chem. Res, 2009, 48(8):3713-3729.

DOI: 10.1021/ie801542g

Google Scholar

[6] Y. Li, B. Mou, Y. Liang, et al. Component Degradation-Enabled Preparation of Biomass-Based Highly Porous Carbon Materials for Energy Storage, ACS. Sustain. Chem. Eng, 2019,7(18).

DOI: 10.1021/acssuschemeng.9b02364

Google Scholar

[7] M. Xia, W. Chen, J. Wu, et al. Organic salt-assisted pyrolysis for preparation of porous carbon from cellulose, hemicellulose and lignin: New insight from structure evolution, Fuel, 2021, 291: 120185.

DOI: 10.1016/j.fuel.2021.120185

Google Scholar

[8] E. Obataya, K. Minato. Potassium acetate-catalyzed acetylation of wood: reaction rates at low temperatures, Wood. Sci. Technol, 2009, 43: 405-413.

DOI: 10.1007/s00226-008-0212-7

Google Scholar

[9] G Huang, Y. Liu, X. Wu, et al. Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance, New. Carbon. Mater, 2019, 34(3): 247-257.

DOI: 10.1016/s1872-5805(19)60014-4

Google Scholar

[10] W. Huang, H. Zhang, Y. Huang, et al. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors, Carbon, 2011, 49(3): 838-843.

DOI: 10.1016/j.carbon.2010.10.025

Google Scholar

[11] G. Singh, K.S. Lakhi, I.Y. Kim, et al. Highly efficient method for the synthesis of activated mesoporous biocarbon with extremely high surface area for high-pressure CO2 adsorption, ACS Appl. Mater. Interfaces, 2017, 9(35): 29782-29793.

DOI: 10.1021/acsami.7b08797

Google Scholar

[12] G. Zhu, L.H. Ma, et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors, Nanoscale, 2017, 9(3): 1237-1243.

DOI: 10.1039/c6nr08139h

Google Scholar

[13] Z. Zou, C. Jiang. Hierarchical porous carbons derived from leftover rice for high performance supercapacitors, J. Alloys Compd, 2020, 815: 152280.

DOI: 10.1016/j.jallcom.2019.152280

Google Scholar

[14] M. Keiluweit, P.S. Nico, M.G. Johnson, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol, 2010, 44(4): 1247-1253.

DOI: 10.1021/es9031419

Google Scholar

[15] O.V. Gorbunova, O.N. Baklanova, T.I. Gulyaeva, et al. Effect of thermal pretreatment on porous structure of asphalt-based carbon, J. Mater. Sci, 2022, 57(14): 7239-7249.

DOI: 10.1007/s10853-022-07106-x

Google Scholar

[16] H. Chen, H. Wang, Z. Xue, et al. High hydrogen storage capacity of rice hull based porous carbon,Int. J. Hydrogen Energ, 2012, 37(24): 18888-18894.

DOI: 10.1016/j.ijhydene.2012.09.035

Google Scholar

[17] L.Z. Gong, A. Bao. High-value utilization of lignin to prepare N, O-codoped porous carbon as a high-performance adsorbent for carbon dioxide capture, J. CO2 Util, 2023,68:102374.

DOI: 10.1016/j.jcou.2022.102374

Google Scholar

[18] S.M. De Oliveira Brito, H.M.C. Andrade, L.F. Soares, et al. Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions, J. Hazard. Mater, 2010, 174(1-3): 84-92.

DOI: 10.1016/j.jhazmat.2009.09.020

Google Scholar

[19] Q. Li, S. Liu, L. Wang, et al. Efficient nitrogen doped porous carbonaceous CO2 adsorbents based on lotus leaf, J. Environ. Sci, 2021, 103: 268-278.

DOI: 10.1016/j.jes.2020.11.008

Google Scholar

[20] Y. Le Brech, T. Ghislain, S. Leclerc, et al. Effect of potassium on the mechanisms of biomass pyrolysis studied using complementary analytical techniques, ChemSusChem, 2016, 9(8): 863-872.

DOI: 10.1002/cssc.201501560

Google Scholar

[21] Q. Zeng, D. Wu, C. Zou, et al. Template-free fabrication of hierarchical porous carbon based on intra-inter-sphere crosslinking of monodisperse styrene–divinylbenzene copolymer nanospheres, Chem. Commun, 2010, 46(32): 5927-5929.

DOI: 10.1039/c0cc00449a

Google Scholar

[22] J. Ludwinowicz, M. Jaroniec. Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption, Carbon, 2015, 82: 297-303.

DOI: 10.1016/j.carbon.2014.10.074

Google Scholar

[23] S.D. Bao, W. Jian, J. H. Li, et al. Phosphorus-induced formation of micropores and nitrogen groups for efficient CO2 capture: Experiments and DFT calculations, Chem. Eng. J,2023,475:146-149.

DOI: 10.1016/j.cej.2023.146149

Google Scholar

[24] C.C. Huang, H.M. Chen, C.H. Chen, et al. Effect of surface oxides on hydrogen storage of activated carbon, Sep. Purif. Technol, 2010, 70(3): 291-295.

Google Scholar

[25] G. Zhao, C. Chen, D. Yu, et al. One-step production of ONS co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors, Nano Energ, 2018, 47: 547-555.

DOI: 10.1016/j.nanoen.2018.03.016

Google Scholar

[26] Q. Li, X. Wu, Y. Zhao, et al. Nitrogen‐Doped Hierarchical Porous Carbon through One‐Step Activation of Bean Curd for High‐Performance Supercapacitor Electrode, ChemElectroChem, 2018, 5(12): 1606-1614.

DOI: 10.1002/celc.201800230

Google Scholar

[27] J.W.F. To, J. He, J. Mei, et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor, J. Am. Chem. Soc, 2016, 138(3): 1001-1009.

DOI: 10.1021/jacs.5b11955.s001

Google Scholar

[28] H. Tian, L. Chen, Z. Huang, et al. Increasing the bio-aromatics yield in the biomass pyrolysis oils by the integration of torrefaction deoxygenation pretreatment and catalytic fast pyrolysis with a dual catalyst system, Renew. Energy, 2022, 187: 561-571.

DOI: 10.1016/j.renene.2022.01.096

Google Scholar

[29] C. Kırbıyık, A.E. Pütün, E. Pütün. Comparative studies on adsorptive removal of heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost agro-residue, Water Sci Technol, 2016, 73(2): 423-436.

DOI: 10.2166/wst.2015.504

Google Scholar

[30] H. Tian, Y. Wei, S. Cheng, et al. Optimizing the gasification reactivity of biochar: The composition, structure and kinetics of biochar derived from biomass lignocellulosic components and their interactions during gasification process, Fuel, 2022, 324: 124709.

DOI: 10.1016/j.fuel.2022.124709

Google Scholar

[31] Y. Xian, J. Wu, G. Yang, et al. Adsorption characteristics of Cd (II) in aqueous solutions using spent mushroom substrate biochars produced at different pyrolysis temperatures, RSC Adv, 2018, 8(49): 28002-28012.

DOI: 10.1039/c8ra03958e

Google Scholar

[32] A.G.A. Jameel, Y. Han, O. Brignoli, et al. Heavy fuel oil pyrolysis and combustion: Kinetics and evolved gases investigated by TGA-FTIR, J. Anal. Appl. Pyrolysis, 2017, 127:183-195.

DOI: 10.1016/j.jaap.2017.08.008

Google Scholar

[33] C. Lei, C. Ji, H Mi, et al. Engineering kinetics-favorable carbon sheets with an intrinsic network for a superior supercapacitor containing a dual cross-linked hydrogel electrolyte, ACS Appl. Mater. Interfaces, 2020, 12(47): 53164-53173.

DOI: 10.1021/acsami.0c16985

Google Scholar

[34] N. Sudhan, K. Subramani, M. Karnan, et al. Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes, Energy Fuels, 2017, 31(1): 977-985.

DOI: 10.1021/acs.energyfuels.6b01829

Google Scholar

[35] N.P. Wickramaratne, M. Jaroniec. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres, J. Mater. Chem. A, 2013, 1(1): 112-116.

DOI: 10.1039/c2ta00388k

Google Scholar

[36] J. Serafin, O.F. Cruz Jr. Promising activated carbons derived from common oak leaves and their application in CO2 storage, J. Environ. Chem. Eng, 2022, 10(3): 107642.

DOI: 10.1016/j.jece.2022.107642

Google Scholar

[37] G.K. Parshetti, S. Chowdhury, Balasubramanian R. Biomass derived low-cost microporous adsorbents for efficient CO2 capture, Fuel, 2015, 148: 246-254.

DOI: 10.1016/j.fuel.2015.01.032

Google Scholar

[38] Y. Lin, C. Kong, Q. Zhang, et al. Metal‐organic frameworks for carbon dioxide capture and methane storage, Adv. Energy Mater, 2017, 7(4): 1601296.

Google Scholar

[39] S.S. Kaye, J.R. Long. Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co (CN)6]2(M= Mn, Fe, Co, Ni, Cu, Zn), J. Am. Chem. Soc, 2005, 127(18): 6506-6507.

DOI: 10.1021/ja051168t.s001

Google Scholar

[40] X. Hu, B.O. Skadtchenko, M. Trudeau, et al. Hydrogen storage in chemically reducible mesoporous and microporous Ti oxides, J. Am. Chem. Soc, 2006, 128(36): 11740-11741.

DOI: 10.1021/ja0639766

Google Scholar

[41] H.A. Patel, J. Byun, C.T. Yavuz. Carbon dioxide capture adsorbents: chemistry and methods, ChemSusChem, 2017, 10(7): 1303-1317.

DOI: 10.1002/cssc.201601545

Google Scholar