[1]
W.P. Kong, J. Liu. Nitrogen-decorated, porous carbons derived from waste cow manure as efficient catalysts for the selective capture and conversion of CO2, RSC Adv.2019,9(9).
DOI: 10.1039/c8ra10497b
Google Scholar
[2]
M. Oschatz, M. Antonietti. A search for selectivity to enable CO2 capture with porous adsorbents, Energy Environ.Sci,2018,11(1).
DOI: 10.1039/c7ee02110k
Google Scholar
[3]
S. Park, S.M. Choi, S.H. Park. Nitrogen-doped nanoporous carbons derived from lignin for high CO2 capacity, Carbon Lett,2019,29(3).
DOI: 10.1007/s42823-019-00025-z
Google Scholar
[4]
R. Wu, A Bao. Preparation of cellulose carbon material from cow dung and its CO2 adsorption performance, J.CO2 Util,2023,68.
DOI: 10.1016/j.jcou.2022.102377
Google Scholar
[5]
P. Kumar, D.M. Barrett, M.J. Delwiche, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Ind. Eng. Chem. Res, 2009, 48(8):3713-3729.
DOI: 10.1021/ie801542g
Google Scholar
[6]
Y. Li, B. Mou, Y. Liang, et al. Component Degradation-Enabled Preparation of Biomass-Based Highly Porous Carbon Materials for Energy Storage, ACS. Sustain. Chem. Eng, 2019,7(18).
DOI: 10.1021/acssuschemeng.9b02364
Google Scholar
[7]
M. Xia, W. Chen, J. Wu, et al. Organic salt-assisted pyrolysis for preparation of porous carbon from cellulose, hemicellulose and lignin: New insight from structure evolution, Fuel, 2021, 291: 120185.
DOI: 10.1016/j.fuel.2021.120185
Google Scholar
[8]
E. Obataya, K. Minato. Potassium acetate-catalyzed acetylation of wood: reaction rates at low temperatures, Wood. Sci. Technol, 2009, 43: 405-413.
DOI: 10.1007/s00226-008-0212-7
Google Scholar
[9]
G Huang, Y. Liu, X. Wu, et al. Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance, New. Carbon. Mater, 2019, 34(3): 247-257.
DOI: 10.1016/s1872-5805(19)60014-4
Google Scholar
[10]
W. Huang, H. Zhang, Y. Huang, et al. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors, Carbon, 2011, 49(3): 838-843.
DOI: 10.1016/j.carbon.2010.10.025
Google Scholar
[11]
G. Singh, K.S. Lakhi, I.Y. Kim, et al. Highly efficient method for the synthesis of activated mesoporous biocarbon with extremely high surface area for high-pressure CO2 adsorption, ACS Appl. Mater. Interfaces, 2017, 9(35): 29782-29793.
DOI: 10.1021/acsami.7b08797
Google Scholar
[12]
G. Zhu, L.H. Ma, et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors, Nanoscale, 2017, 9(3): 1237-1243.
DOI: 10.1039/c6nr08139h
Google Scholar
[13]
Z. Zou, C. Jiang. Hierarchical porous carbons derived from leftover rice for high performance supercapacitors, J. Alloys Compd, 2020, 815: 152280.
DOI: 10.1016/j.jallcom.2019.152280
Google Scholar
[14]
M. Keiluweit, P.S. Nico, M.G. Johnson, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol, 2010, 44(4): 1247-1253.
DOI: 10.1021/es9031419
Google Scholar
[15]
O.V. Gorbunova, O.N. Baklanova, T.I. Gulyaeva, et al. Effect of thermal pretreatment on porous structure of asphalt-based carbon, J. Mater. Sci, 2022, 57(14): 7239-7249.
DOI: 10.1007/s10853-022-07106-x
Google Scholar
[16]
H. Chen, H. Wang, Z. Xue, et al. High hydrogen storage capacity of rice hull based porous carbon,Int. J. Hydrogen Energ, 2012, 37(24): 18888-18894.
DOI: 10.1016/j.ijhydene.2012.09.035
Google Scholar
[17]
L.Z. Gong, A. Bao. High-value utilization of lignin to prepare N, O-codoped porous carbon as a high-performance adsorbent for carbon dioxide capture, J. CO2 Util, 2023,68:102374.
DOI: 10.1016/j.jcou.2022.102374
Google Scholar
[18]
S.M. De Oliveira Brito, H.M.C. Andrade, L.F. Soares, et al. Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions, J. Hazard. Mater, 2010, 174(1-3): 84-92.
DOI: 10.1016/j.jhazmat.2009.09.020
Google Scholar
[19]
Q. Li, S. Liu, L. Wang, et al. Efficient nitrogen doped porous carbonaceous CO2 adsorbents based on lotus leaf, J. Environ. Sci, 2021, 103: 268-278.
DOI: 10.1016/j.jes.2020.11.008
Google Scholar
[20]
Y. Le Brech, T. Ghislain, S. Leclerc, et al. Effect of potassium on the mechanisms of biomass pyrolysis studied using complementary analytical techniques, ChemSusChem, 2016, 9(8): 863-872.
DOI: 10.1002/cssc.201501560
Google Scholar
[21]
Q. Zeng, D. Wu, C. Zou, et al. Template-free fabrication of hierarchical porous carbon based on intra-inter-sphere crosslinking of monodisperse styrene–divinylbenzene copolymer nanospheres, Chem. Commun, 2010, 46(32): 5927-5929.
DOI: 10.1039/c0cc00449a
Google Scholar
[22]
J. Ludwinowicz, M. Jaroniec. Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption, Carbon, 2015, 82: 297-303.
DOI: 10.1016/j.carbon.2014.10.074
Google Scholar
[23]
S.D. Bao, W. Jian, J. H. Li, et al. Phosphorus-induced formation of micropores and nitrogen groups for efficient CO2 capture: Experiments and DFT calculations, Chem. Eng. J,2023,475:146-149.
DOI: 10.1016/j.cej.2023.146149
Google Scholar
[24]
C.C. Huang, H.M. Chen, C.H. Chen, et al. Effect of surface oxides on hydrogen storage of activated carbon, Sep. Purif. Technol, 2010, 70(3): 291-295.
Google Scholar
[25]
G. Zhao, C. Chen, D. Yu, et al. One-step production of ONS co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors, Nano Energ, 2018, 47: 547-555.
DOI: 10.1016/j.nanoen.2018.03.016
Google Scholar
[26]
Q. Li, X. Wu, Y. Zhao, et al. Nitrogen‐Doped Hierarchical Porous Carbon through One‐Step Activation of Bean Curd for High‐Performance Supercapacitor Electrode, ChemElectroChem, 2018, 5(12): 1606-1614.
DOI: 10.1002/celc.201800230
Google Scholar
[27]
J.W.F. To, J. He, J. Mei, et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor, J. Am. Chem. Soc, 2016, 138(3): 1001-1009.
DOI: 10.1021/jacs.5b11955.s001
Google Scholar
[28]
H. Tian, L. Chen, Z. Huang, et al. Increasing the bio-aromatics yield in the biomass pyrolysis oils by the integration of torrefaction deoxygenation pretreatment and catalytic fast pyrolysis with a dual catalyst system, Renew. Energy, 2022, 187: 561-571.
DOI: 10.1016/j.renene.2022.01.096
Google Scholar
[29]
C. Kırbıyık, A.E. Pütün, E. Pütün. Comparative studies on adsorptive removal of heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost agro-residue, Water Sci Technol, 2016, 73(2): 423-436.
DOI: 10.2166/wst.2015.504
Google Scholar
[30]
H. Tian, Y. Wei, S. Cheng, et al. Optimizing the gasification reactivity of biochar: The composition, structure and kinetics of biochar derived from biomass lignocellulosic components and their interactions during gasification process, Fuel, 2022, 324: 124709.
DOI: 10.1016/j.fuel.2022.124709
Google Scholar
[31]
Y. Xian, J. Wu, G. Yang, et al. Adsorption characteristics of Cd (II) in aqueous solutions using spent mushroom substrate biochars produced at different pyrolysis temperatures, RSC Adv, 2018, 8(49): 28002-28012.
DOI: 10.1039/c8ra03958e
Google Scholar
[32]
A.G.A. Jameel, Y. Han, O. Brignoli, et al. Heavy fuel oil pyrolysis and combustion: Kinetics and evolved gases investigated by TGA-FTIR, J. Anal. Appl. Pyrolysis, 2017, 127:183-195.
DOI: 10.1016/j.jaap.2017.08.008
Google Scholar
[33]
C. Lei, C. Ji, H Mi, et al. Engineering kinetics-favorable carbon sheets with an intrinsic network for a superior supercapacitor containing a dual cross-linked hydrogel electrolyte, ACS Appl. Mater. Interfaces, 2020, 12(47): 53164-53173.
DOI: 10.1021/acsami.0c16985
Google Scholar
[34]
N. Sudhan, K. Subramani, M. Karnan, et al. Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes, Energy Fuels, 2017, 31(1): 977-985.
DOI: 10.1021/acs.energyfuels.6b01829
Google Scholar
[35]
N.P. Wickramaratne, M. Jaroniec. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres, J. Mater. Chem. A, 2013, 1(1): 112-116.
DOI: 10.1039/c2ta00388k
Google Scholar
[36]
J. Serafin, O.F. Cruz Jr. Promising activated carbons derived from common oak leaves and their application in CO2 storage, J. Environ. Chem. Eng, 2022, 10(3): 107642.
DOI: 10.1016/j.jece.2022.107642
Google Scholar
[37]
G.K. Parshetti, S. Chowdhury, Balasubramanian R. Biomass derived low-cost microporous adsorbents for efficient CO2 capture, Fuel, 2015, 148: 246-254.
DOI: 10.1016/j.fuel.2015.01.032
Google Scholar
[38]
Y. Lin, C. Kong, Q. Zhang, et al. Metal‐organic frameworks for carbon dioxide capture and methane storage, Adv. Energy Mater, 2017, 7(4): 1601296.
Google Scholar
[39]
S.S. Kaye, J.R. Long. Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co (CN)6]2(M= Mn, Fe, Co, Ni, Cu, Zn), J. Am. Chem. Soc, 2005, 127(18): 6506-6507.
DOI: 10.1021/ja051168t.s001
Google Scholar
[40]
X. Hu, B.O. Skadtchenko, M. Trudeau, et al. Hydrogen storage in chemically reducible mesoporous and microporous Ti oxides, J. Am. Chem. Soc, 2006, 128(36): 11740-11741.
DOI: 10.1021/ja0639766
Google Scholar
[41]
H.A. Patel, J. Byun, C.T. Yavuz. Carbon dioxide capture adsorbents: chemistry and methods, ChemSusChem, 2017, 10(7): 1303-1317.
DOI: 10.1002/cssc.201601545
Google Scholar