[1]
W. Zhang: Technical Problem Identification for the Failures of the Liberty Ships, Challenges, 7, no. 2: 20. https://doi.org/10.3390/challe7020020 (2016).
Google Scholar
[2]
American Association of State Highway and Transportation Officials, Guide Specification for Fracture Critical Non-Redundant Steel Bridge Members, Washington DC, 1978.
Google Scholar
[3]
D. Senthilkumar: Deep cryogenic treatment of En 31 and En 8 steel for the development of wear resistance, Advances in Materials and Processing Technologies, DOI: 10.1080/2374068X. 2021.1878696 (2021).
DOI: 10.1080/2374068x.2021.1878696
Google Scholar
[4]
J. Vimal, A. Bensely, D.M. Lal, K. Srinivasan: Deep Cryogenic Treatment Improves Wear Resistance of En 31 Steel. Materials and Manufacturing Processes, 23(4), 369–376. doi:10.1080/10426910801938098 (2008).
DOI: 10.1080/10426910801938098
Google Scholar
[5]
L. Zhang, X. Huang, Y. Wang, Y. Guo, G. Dai, D. Li: Achieving Excellent Strength–Ductility and Impact Toughness Combination by Cyclic Quenching in Medium Mn TRIP-Aided Steel. J. Mat. Eng. and Perform 27, 5769–5777 (2018).
DOI: 10.1007/s11665-018-3662-6
Google Scholar
[6]
Singh, D., Rao, P.N., and Jayaganthan, R., Microstructures and impact toughness behavior of Al 5083 alloy processed by cryorolling and afterwards annealing. Int. J. Miner. Metall. and Mater. 2013, 20, 759–769.
DOI: 10.1007/s12613-013-0794-4
Google Scholar
[7]
F. Deirmina, S. Amirabdollahian, M. Pellizzari, A. Molinari: Effect of Different Post-Processing Thermal Treatments on the Fracture Toughness and Tempering Resistance of Additively Manufactured H13 Hot-Work Tool Steel. Metals, 14, 112, (2024).
DOI: 10.3390/met14010112
Google Scholar
[8]
H. Peng, L. Hu, X. Zhang, X. Wei, L. Li, J. Zhou: Microstructural Evolution, Behavior of Precipitates, and Mechanical Properties of Powder Metallurgical High-Speed Steel S390 During Tempering. Metall. and Mat. Trans. A., 50, 874–883 (2019).
DOI: 10.1007/s11661-018-5040-2
Google Scholar
[9]
S. S. M. Tavares, C. R. Rodrigues, C. A. S. de Oliveira, C.B. Woyames, J. Dille: Influence of Heat Treatments on Microstructure and Toughness of 9%Ni Steel. J. Mat. Eng. and Perform, 27, 1530–1536 (2018).
DOI: 10.1007/s11665-018-3257-2
Google Scholar
[10]
K. Yang, B. S. El-Haik.: Taguchi's Orthogonal Array Experiment, Chap. 13 in Design for Six Sigma: A Roadmap for Product Development. 2nd ed. New York: McGraw-Hill. https: //www.accessengineeringlibrary.com/content/book/9780071547673/chapter/chapter13 (2009).
Google Scholar
[11]
K. Kamei, A.G. William, L.S. Koveile, N. Ahmad, A. Chakravorty, R. Davis: An Experimental Study of the Effect of Thermal Treatments & Charpy Impact Test Parameters on Impact Toughness of EN-31 Steel. IOSR J. Mech. and Civil. Eng. 11, 17-22 (2014).
DOI: 10.9790/1684-11311722
Google Scholar
[12]
P. Wang, P. Meng, J.Y. Zhai, Z.Q. Zhu: A hybrid method using experiment design and grey relational analysis for multiple criteria decision making problems, Knowledge-Based Systems, Vol 53, pp.100-107 (2013).
DOI: 10.1016/j.knosys.2013.08.025
Google Scholar
[13]
R. Davis: Application of Taguchi Design of Experiment method in Optimization of Izod Impact Testing, Applied Mechanics and Materials, Trans Tech Publications, Switzerland, Volume 541-542, pp: 663-668, https://doi.org/10.4028/www.scientific.net/AMM.541-542.663 (2014)
DOI: 10.4028/www.scientific.net/amm.541-542.663
Google Scholar