[1]
N. Saunders, A.P. Miodownik, CALPHAD: Calculation of Phase Diagrams - A Comprehensive Guide, Bd. 1. in Pergamon Materials Series, vol. 1. Elsevier, 1998.
DOI: 10.1016/S1470-1804(98)X8001-6
Google Scholar
[2]
J. Chen u. a., "Design and Optimization of Heat Treatment Process Parameters for High-Molybdenum-Vanadium High-Speed Steel for Rolls", Materials, Bd. 16, Nr. 22, S. 7103, Nov. 2023.
DOI: 10.3390/ma16227103
Google Scholar
[3]
M. Krbata u. a., "Microstructural Changes and Determination of a Continuous Cooling Transformation (CCT) Diagram Using Dilatometric Analysis of M398 High-Alloy Tool Steel Produced by Microclean Powder Metallurgy", Materials, Bd. 16, Nr. 12, S. 4473, Juni 2023.
DOI: 10.3390/ma16124473
Google Scholar
[4]
J. Dykas, L. Samek, A. Grajcar, und A. Kozłowska, "Modelling of Phase Diagrams and Continuous Cooling Transformation Diagrams of Medium Manganese Steels", Symmetry, Bd. 15, Nr. 2, S. 381, Feb. 2023.
DOI: 10.3390/sym15020381
Google Scholar
[5]
S. C. Cha u. a., "CALPHAD-based alloy design for advanced automotive steels - Part I: Development of bearing steels with enhanced strength and optimized microstructure", Calphad, Bd. 54, S. 165–171, 2016.
DOI: 10.1016/j.calphad.2016.04.007
Google Scholar
[6]
A. Panda, A. K. Sahoo, R. Kumar, und R. K. Das, "A review on machinability aspects for AISI 52100 bearing steel", Materials Today: Proceedings, Bd. 23, S. 617–621, 2020.
DOI: 10.1016/j.matpr.2019.05.422
Google Scholar
[7]
T. Coors, Y. Faqiri, F. Saure, F. Pape, T. Hassel, und G. Poll, "Wear of Tailored Forming Steels", Adv Eng Mater, S. 2201740, Mai 2023.
DOI: 10.1002/adem.202201740
Google Scholar
[8]
"DIN 51819-1:2016-12, Prüfung von Schmierstoffen_- Mechanisch-dynamische Prüfung auf dem Wälzlagerschmierstoff-Prüfgerät FE8_- Teil_1: Allgemeine Arbeitsgrundlagen", Beuth Verlag GmbH.
DOI: 10.31030/2577274
Google Scholar
[9]
H. Berns, Hrsg., Hartlegierungen und Hartverbundwerkstoffe. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
DOI: 10.1007/978-3-642-51505-7
Google Scholar
[10]
F. Jeglitsch, "NIOBIUM IN TOOL STEELS AND CEMENTED CARBIDES", 2002. [Online]. Verfügbar unter: https://api.semanticscholar.org/CorpusID:229360204
Google Scholar
[11]
E. Kocaman, B. Kılınç, M. Durmaz, Ş. Şen, und U. Şen, "The influence of chromium content on wear and corrosion behavior of surface alloyed steel with Fe(16−x)Crx(B,C)4 electrode", Engineering Science and Technology, an International Journal, Bd. 24, Nr. 2, S. 533–542, Apr. 2021.
DOI: 10.1016/j.jestch.2020.08.003
Google Scholar
[12]
S. Taylor, V. Janik, R. Grimes, und R. Dashwood, "Study on the Influence of Nickel Additions on AA7020 Formability Under Superplastic Forming Like Conditions", Met. Mater. Int., Bd. 29, Nr. 9, S. 2597–2604, Sep. 2023.
DOI: 10.1007/s12540-023-01396-9
Google Scholar
[13]
T. Blohm, M. Mildebrath, M. Stonis, J. Langner, T. Hassel, und B.-A. Behrens, "Investigation of the coating thickness of plasma-transferred arc deposition welded and cross wedge rolled hybrid parts", Production Engineering, Bd. 11, März 2017.
DOI: 10.1007/s11740-017-0734-7
Google Scholar
[14]
J. Wilden, J. P. Bergmann, H. Frank, S. Pinzl, und F. Schreiber, "Thin Plasma- Transferred- Arc Welded Coatings - an Alternative to Thermally Sprayed Coatings?", gehalten auf der ITSC2004, B. R. Marple und C. Moreau, Hrsg., Osaka, Japan, Mai 2004, S. 556-561.
DOI: 10.31399/asm.cp.itsc2004p0556
Google Scholar
[15]
A. Y. C. Nee, Hrsg., Handbook of Manufacturing Engineering and Technology. London: Springer London, 2015.
DOI: 10.1007/978-1-4471-4670-4
Google Scholar
[16]
U. Dilthey, Hrsg., Schweisstechnische Fertigungsverfahren. 2: Verhalten der Werkstoffe beim Schweißen / Ulrich Dilthey, 3., Bearb. Aufl. Berlin Heidelberg: Springer, 2005.
DOI: 10.1007/b139036
Google Scholar
[17]
J. Li und C. Shi, "Carbides in Special Steel", in Carbide in Special Steel, in Engineering Materials. , Singapore: Springer Singapore, 2021, S. 1–57.
DOI: 10.1007/978-981-16-1456-9_1
Google Scholar
[18]
L. Xu, S. Wei, J. Xing, und R. Long, "Effects of carbon content and sliding ratio on wear behavior of high-vanadium high-speed steel (HVHSS) under high-stress rolling–sliding contact", Tribology International, Bd. 70, S. 34–41, Feb. 2014.
DOI: 10.1016/j.triboint.2013.09.021
Google Scholar
[19]
K. Wieczerzak, P. Bała, M. Stępień, G. Cios, und T. Kozieł, "The Characterization Of Cast Fe-Cr-C Alloy", Archives of Metallurgy and Materials, Bd. 60, Nr. 2, S. 779–782, Juni 2015.
DOI: 10.1515/amm-2015-0206
Google Scholar
[20]
J.-H. Chen u. a., "Microstructure and abrasive wear properties of Fe-Cr-C hardfacing alloy cladding manufactured by Gas Tungsten Arc Welding (GTAW)", Met. Mater. Int., Bd. 19, Nr. 1, S. 93–98, Jän. 2013.
DOI: 10.1007/s12540-013-1015-4
Google Scholar
[21]
H. Berns, "Entstehung des Gefüges bei der Fertigung", in Hartlegierungen und Hartverbundwerkstoffe, H. Berns, Hrsg., Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, S. 13–25.
DOI: 10.1007/978-3-642-51505-7_2
Google Scholar