Development of High Strength SiC Ceramics Reinforced by Beta Si3N4 Rod-Like Crystals

Article Preview

Abstract:

Silicon carbide (SiC) ceramics have excellent properties such as high thermal conductivity, heat resistance and high hardness. However, their low strengths due to the low fracture toughness make it difficult to produce SiC ceramics with large size and complicated shapes. The purpose of this study is to fabricate SiC/Si₃N₄ composite materials (SiC > Si₃N₄) reinforced by β-Si₃N₄ rod-like crystals (whiskers) in order to improve the mechanical properties of SiC ceramics. In this work, following two methods for fabricating SiC/Si₃N₄ composites have been developed. Method Ⅰ: porous β-Si₃N₄ with porosity more than 50 % was infiltrated by phenolic resin, heat-treated in N₂ atmosphere to convert phenolic resin to carbon, and finally infiltrated by molten Si into the porous β-Si₃N₄-carbon composites (reaction bonding). Method Ⅱ: hot-pressing the powder mixture of SiC and the β-Si₃N₄ whiskers with sintering additive. The microstructures and mechanical properties of SiC/Si₃N₄ composites fabricated by two methods were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1150)

Pages:

103-112

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Suyama, Y. Itoh, A. Kohayama and Y. Katoh, J. Ceram. Soc. Japan, 109 [4] 315-321 (2001).

Google Scholar

[2] T. Maity and Y.-W. Kim, Int J Appl Ceram Technol., 19: 130-148 (2022).

Google Scholar

[3] T. Yoshitake, Y. Ohta and M. Kitayama, J. Mater. Sci. and Chem. Engi., 8, 52-65 (2020).

Google Scholar

[4] K. Yoshida, J. Ceram. Soc. Japan, 118 [2] 82-90 (2010).

Google Scholar

[5] P. F. Becher, J. Am. Ceram. Soc., 74, 255-69 (1991).

Google Scholar

[6] S. T. Buljan, J. G. Baldoni and M. L. Huckabee, Si₃N₄-SiC Composites, Am. Ceram. Soc. Bull., 66 [2] 347-52 (1987).

Google Scholar

[7] G. Sasaki, H. Nakase, K. Suganuma, T. Fujita and K. Niihara, J. Ceram. Soc. Japan, 100 [4] 536-540 (1992).

Google Scholar

[8] T. Ohtsuka, H. Mabuchi, H. Tsuda and K. Morii, J. Japan Soc. Powder and Powder Metall., 45, [4] 321-325 (1998).

DOI: 10.2497/jjspm.45.321

Google Scholar

[9] J.-F. Yang, T. Ohji, T. Sekino, C.-L. Li and K. Niihara, J. Euro. Ceram. Soc., 21, 2179-2183 (2001).

Google Scholar

[10] K. Yamada and N. Kamiya, J. Japan Soc. Powder and Powder Metall., 55 [10] 685-691 (2020).

Google Scholar

[11] T. Anan, M. Kitayama and Y. Ohta, J. MMIJ, 124, 245-248 (2008).

Google Scholar

[12] M. Kitayama, K. Hirao, M. Toriyama and S. Kanzaki, J. Ceram. Soc. Japan, 107 [10] 930-934 (1999).

Google Scholar

[13] I. A. Bondar and F. Y. Galakhov, Izu. Akad. Nauk SSSR, Ser. Khim., 7, 1325 (1963).

Google Scholar

[14] H. Nakamura, S. Umebayashi and K. Kishi, Thermal Expansion Coefficient of Hot-Pressed β-sialon-SiC and Si₃N₄-SiC Composites, J. Ceram. Soc. Japan, 97 [11] 1412-15 (1989).

DOI: 10.2109/jcersj.97.1412

Google Scholar

[15] I. Kondo, N. Tamari and Y. Toibana, Thermal Properties of Si₃N₄-SiC Whisker Composite, Yogyo-Kyokai-Shi, 94 [11] 1180-1182 (1986).

DOI: 10.2109/jcersj1950.94.1095_1180

Google Scholar

[16] T. Sata, Asakura Publishing Co., Ltd., Japan, p.101 (1990).

Google Scholar

[17] I. Kondoh, M. Asahina and N. Tamari, J. Ceram. Soc. Japan, 97 [11] 1424-27 (1989).

Google Scholar

[18] W.-S. Cho and K. Hayashi, J. Japan Inst. Metals, 56 [9] 1087-1092 (1992).

Google Scholar