[1]
D. Xu, S. Banerjee, Y. Wang, S. Huang, and X. Cheng, "Temperature and loading effects of embedded smart piezoelectric sensor for health monitoring of concrete structures," Constr. Build. Mater. 76 (2015): 187–193.
DOI: 10.1016/j.conbuildmat.2014.11.067
Google Scholar
[2]
A. Narayanan, M. Duddi, A. Kocherla, and K.V.L. Subramaniam, "Smart and autonomous monitoring of cracking in concrete structures with PZT sensor array-based hybrid sensing," Structures 68 (2024): 107178.
DOI: 10.1016/j.istruc.2024.107178
Google Scholar
[3]
S.J. Alexander, P. Sumathi, S.K. Panigrahi, and N. Gopalakrishnan, "Embedded dual PZT-based monitoring for curing of concrete," Constr. Build. Mater. 312 (2021): 125316.
DOI: 10.1016/j.conbuildmat.2021.125316
Google Scholar
[4]
M. Haq, S. Bhalla, and T. Naqvi, "Fatigue damage and residual fatigue life assessment in reinforced concrete frames using PZT-impedance transducers," Cem. Conc. Compos. 114 (2020): 103771.
DOI: 10.1016/j.cemconcomp.2020.103771
Google Scholar
[5]
Z. Li, B. Dong, and D. Zhang, "Influence of polarization on properties of 0–3 cement-based PZT composites," Cem. Conc. Compos. 27 (2005): 27–32.
DOI: 10.1016/j.cemconcomp.2004.02.001
Google Scholar
[6]
B. Shen, X. Yang, and Z. Li, "A cement-based piezoelectric sensor for civil engineering structure," Mater. Struct. 39 (2006): 37–42.
DOI: 10.1617/s11527-005-9021-8
Google Scholar
[7]
A. Chaipanich, R. Rianyoi, R. Potong, and N. Jaitanong, "aging of 0–3 piezoelectric PZT ceramic–Portland cement composites," Ceram. Inte. 40 (2014): 13579–13584.
DOI: 10.1016/j.ceramint.2014.05.073
Google Scholar
[8]
H.H. Pan, C.K. Wang, M. Tia, and Y.M. Su, "Influence of water-to-cement ratio on piezoelectric properties of cement-based composites containing PZT particles," Constr. Build. Mater. 239 (2020): 117858.
DOI: 10.1016/j.conbuildmat.2019.117858
Google Scholar
[9]
X.M. Yang, and Z.J. Li, "Cement-based piezoelectric sensor for monitoring of highway traffic I: Basic properties," J. Disas. Preve. Mitig. Eng. 30 (2010): 413-417.
Google Scholar
[10]
H.H. Pan, and J.C. Guan, "Stress and strain behavior monitoring of concrete through electromechanical impedance using piezoelectric cement sensor and PZT sensor,"Constr. Build. Mater. 324 (2022): 126685.
DOI: 10.1016/j.conbuildmat.2022.126685
Google Scholar
[11]
Z. Shi, L. Hua, Y. Lu, D. Shen, and D. Huang, "Investigation of carbon black nanoparticle modified cementitious composites for sensing dynamic vibro-acousto signals," Measurement 237 (2024): 115231.
DOI: 10.1016/j.measurement.2024.115231
Google Scholar
[12]
H. Gong, Z. Li, Y. Zhang, and R. Fan, "Piezoelectric and dielectric behavior of 0-3 cement-based composites mixed with carbon black," J. Euro. Ceram. Soc. 29 (2009): 2013–2019.
Google Scholar
[13]
H.H. Pan, T.Z. Lai, and A. Chaipanich, T. Wittinanon, "Effect of graphene on the piezoelectric properties of cement-based piezoelectric composites," Sens. Actua. A 346 (2022): 113882.
DOI: 10.1016/j.sna.2022.113882
Google Scholar
[14]
X. Zhu, and Y. Ling, "Preparation of cement modified by multi-walled carbon nanotubes and investigation of its piezoelectric property," Alex. Eng. J. 81 (2023): 130–136.
DOI: 10.1016/j.aej.2023.09.028
Google Scholar
[15]
S. Huang, J. Chang, L. Lu, F. Liu, Z. Ye, and X. Cheng, "Preparation and polarization of 0–3 cement based piezoelectric composites," Mater. Res. Bull. 41 (2006): 291–297.
DOI: 10.1016/j.materresbull.2005.08.026
Google Scholar
[16]
H.H. Pan, C.K. Wang, and Y.C. Cheng, "Curing time and heating conditions for piezoelectric properties of cement-based composites containing PZT," Constr. Build. Mater. 129 (2016): 140–147.
DOI: 10.1016/j.conbuildmat.2016.10.107
Google Scholar
[17]
B. Dong, Y. Liu, N. Han, H. Sun, F. Xing, and D. Qin, "Study on the microstructure of cement-based piezoelectric ceramic composites," Constr. Build. Mater. 72 (2014): 133–138.
DOI: 10.1016/j.conbuildmat.2014.08.058
Google Scholar
[18]
W. Ding, W. Xu, Z. Dong, Y. Liu, Q. Wang, and T. Shiotani, "Influence of hydration capacity for cement matrix on the piezoelectric properties and microstructure of cement-based piezoelectric ceramic composites," Mater. Charact. 179 (2021): 111390.
DOI: 10.1016/j.matchar.2021.111390
Google Scholar
[19]
W. Ding, W. Xu, P. Dong, Y. Liu, and T. Shiotani, "Roles of CSH gel in the microstructure and piezoelectric properties variation of cement-based piezoelectric ceramic composite, " Mater. Lett. 306 (2022): 130952.
DOI: 10.1016/j.matlet.2021.130952
Google Scholar
[20]
H.H. Pan, D.H. Lin, and R. H. Yang, "High piezoelectric and dielectric properties of 0–3 PZT/cement composites by temperature treatment," Cem. Conc. Compos. 72 (2016): 1–8.
DOI: 10.1016/j.cemconcomp.2016.05.025
Google Scholar