[1]
F. Weigl, A generalized technique of two-wavelength, non-diffuse holographic interferometry, Appl. Opt.10(1) (1971) 187.
Google Scholar
[2]
R. W. Farley and P. D. Dao, Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system, Appl. Opt. 34(21) (1995) 4269.
DOI: 10.1364/ao.34.004269
Google Scholar
[3]
H. Y. Shen and H. Su, Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals, J. Appl. Phys. 86(12) (1999) 6647.
DOI: 10.1063/1.371738
Google Scholar
[4]
I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust, Geophys. Res. Lett. 29(9) (2002) 1306.
DOI: 10.1029/2002gl014721
Google Scholar
[5]
A. Collombet, Y. Guyot, M.F. Joubert, M. Laroche, J. Margerie, R. Moncorge and E. Descroix, Experimental and theoretical investigation of 4f3 <-> 4f25d interconfigurational transitions in Nd3+: LiYF4 crystals, Phys. Rev. B 68 (2003) 035115.
DOI: 10.1016/s0925-3467(03)00127-7
Google Scholar
[6]
Y. Xiao, X. Kuang, Y. Yeung and M. Ju, Unraveling the local structure and luminescence evolution in Nd3+ doped LiYF4: a new theoretical approach, Phys. Chem. Chem. Phys. 22 (2020) 21074 – 21082.
DOI: 10.1039/d0cp03748f
Google Scholar
[7]
N.U. Wetter, Neodymium doped lithium yttrium fluoride (Nd:YLiF4) lasers, Materials, Systems and Applications, Woodhead Publishing Series in Electronic and Optical Materials, 2013 323 – 340.
DOI: 10.1533/9780857097507.2.323
Google Scholar
[8]
R.B. Barthem, R. Buisson and J.C. Vial, Optical properties of Nd3+ ion pairs in LiYF4 crystal, Journal de Physique, 46 (1985) C7-483.
DOI: 10.1051/jphyscol:1985786
Google Scholar
[9]
K. R. Nambiar, Lasers: Principles, Types and applications, 2006.
Google Scholar
[10]
Richard Scheps, Efficient laser diode pumped Nd lasers, Appl. Opt. 28 (1989) 89.
DOI: 10.1364/ao.28.000089
Google Scholar
[11]
N. P. Barnes, M. E. Storm, P. L. Cross, M. W. Skolaut, IEEE J. Quant. Electron. 26 (3) (1990) 558.
Google Scholar
[12]
R. B. Barthem, R. Buisson, and J. C. Vial, Optical properties of Nd3+ ion pairs in LiYF4 crystal, J. Phys. (France) 46 (1985) 483.
Google Scholar
[13]
A. L. Harmer, A. Linz, D. R. Gabbe, Fluorescence of Nd3+ in lithium yttrium fluoride, J. Phys. Chem. Solids, 30 (1969) 1483.
DOI: 10.1016/0022-3697(69)90210-8
Google Scholar
[14]
C. Y. Cho, T. L. Huang, S. M. Wen, Y. J. Huang, K. F. Huang, Y. F. Chen, Nd:YLF laser at cryogenic temperature with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm. Opt. Express, 22 (2014) 25318.
DOI: 10.1364/oe.22.025318
Google Scholar
[15]
R. E. Thoma, et al., Phase Equilibria in the System LiF-YF3, J. Phys. Chem., 65 (7) (1961) 1096.
Google Scholar
[16]
P. Battsenguun, N. Tuvjargal, D. Lili, N. Tsogbadrakh, and J. Davaasambuu, Study of synthesis and optical properties in LiYF4 and Pr: LiYF4, Sci. Trans. NUM, Phys 34 (2022) 1
DOI: 10.22353/physics.v34i577.1269
Google Scholar
[17]
V. Petricek, M. Dusek and L. Palatinus, Crystallographic computing system JANA2006: General features. Z. Kristallogr. 229(5) (2014) 345.
Google Scholar
[18]
J. P. Perdew, K. Burke and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B, 54(23) (1996) 16533.
DOI: 10.1103/physrevb.54.16533
Google Scholar
[19]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Giron coli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular andopen-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21 (2009) 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[20]
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Fer retti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Advanced capabilities for materials modelling with quantum ESPRESSO, J. Phys.: Condens. Matter 29, (2017) 465901.
DOI: 10.1088/1361-648x/aa8f79
Google Scholar
[21]
P. Giannozzi, O. Baseggio, P. Bonfa, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Giron-coli, P. Delugas, F. F. Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru and S. Baron, QuantumESPRESSO toward the exascale, J. Chem. Phys. 152 (2020) 154105.
DOI: 10.1063/5.0005082
Google Scholar
[22]
W. Kohn, L. J. Sham. Self-Consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[23]
P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864.
DOI: 10.1103/physrev.136.b864
Google Scholar
[24]
A. M. Rappe, K. M. Rabe, E. Kaxiras and J. D. Joannopoulos, Optimized pseudopotentials, Phys. Rev. B 41(2) (1990) 1227.
DOI: 10.1103/physrevb.41.1227
Google Scholar
[25]
H. J. Monkhorst, J. D. Pack, Special points for brillouin-zone integrations, Physical Review B 13 (1976) 5188.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[26]
M. Methfessel and A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40(6) (1989) 3616.
DOI: 10.1103/physrevb.40.3616
Google Scholar
[27]
P. E. Blochl, O. Jepsen and O. K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B. 49 (1994) 16223.
DOI: 10.1103/physrevb.49.16223
Google Scholar
[28]
M. Cococcioni and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Physical Review B 71 (2005) 035105.
DOI: 10.1103/physrevb.71.035105
Google Scholar
[29]
I. Timrov, N. Vast, R. Gebauer, and S. Baroni, Electron energy loss and inelastic x-ray scattering cross sections from time-dependent density-functional perturbation theory, Phys. Rev. B 88 (2013) 064301.
DOI: 10.1103/physrevb.91.139901
Google Scholar
[30]
I. Timrov, N. Vast, R. Gebauer, and S. Baroni, TurboEELS - A code for the simulation of the electron energy loss and inelastic X-ray scattering spectra using the Liouville - Lanczos approach to time-dependent density-functional perturbation theory, Comp. Phys. Commun. 196 (2015) 460.
DOI: 10.1016/j.cpc.2015.05.021
Google Scholar
[31]
O. Motornyi, N. Vast, I. Timrov, O. Baseggio, S. Baroni, and A. Dal Corso, Electron energy loss spectroscopy of bulk gold with ultrasoft pseudopotentials and the Liouville-Lanczos method, Phys. Rev. B 102 (2020) 035156.
DOI: 10.1103/physrevb.102.035156
Google Scholar
[32]
G. Turri, S. Webster, M. Bass and A. Toncelli, Temperature dependent stimulated emission cross-section in Nd3+YLF4 crystal. Materials, 14 (2021) 431.
DOI: 10.3390/ma14020431
Google Scholar
[33]
A. Goryunov and A. Popov, Crystal structure of LiYF4, Zhurnal Neorganicheskoj Khimii, 37 (1992) 276-279.
Google Scholar
[34]
S. Watanabe, K. Ogasawara, M. Yoshino and T. Nagasaki, First-principles and experimental analysis of fn --> fn-1d1 absorption spectra and multiplet energy levels of Pr3+, Nd3+ and U3+ in LiYF4, Phys. Rev. B 81 (2010) 125128.
Google Scholar