[1]
A. Lucherini, C. Maluk, Intumescent coatings used for the fire-safe design of steel structures: A review. Journal of Constructional Steel Research. 162 (2019) 105712.
DOI: 10.1016/j.jcsr.2019.105712
Google Scholar
[2]
T. Nekora, V. Sidnei, S. Shnal T., O. Nekora, The improvement of the method to determine the temperature in steel reinforced concrete slabs in assessment of their fire resistance. Materials Science Forum. 1066 (2022) 216–223.
DOI: 10.4028/p-3gvljr
Google Scholar
[3]
A. Kovalov, R. Purdenko, Yu. Otrosh, V. Tоmеnkо, N. Rashkevich, E.Shcholokov, M. Pidhornyy, N. Zolotova, O. Suprun, Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies. 119 (2022) 53–61.
DOI: 10.15587/1729-4061.2022.266219
Google Scholar
[4]
I. Medved, N. Rashkevich, Yu. Otrosh, V. Tomenko, Analysis of Experimental Studies of Titanium Alloy. Materials Science Forum. 1141 (2024).35–42.
DOI: 10.4028/p-ryw4rj
Google Scholar
[5]
Y. Otrosh, O. Semkiv, E. Rybka, A. Kovalov, About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering. 708 (2019) 012065.
DOI: 10.1088/1757-899x/708/1/012065
Google Scholar
[6]
S. Sidnei, A. Berezovskyi, I. Nedilko, S. Pozdieiev, The improvement of the simplified calculation method for assessing the fire resistance of a hollow-core slab. AIP Conference Proceedings. 2840 (2023).
DOI: 10.1063/5.0168721
Google Scholar
[7]
A. Kovalov, Y. Otrosh, O. Chernenko, M. Zhuravskij, M. Anszczak, Modeling of non-stationary heating of steel plates with fire-protective coatings in ansys under the conditions of hydrocarbon fire temperature mode. Materials Science Forum. 1038 (2021) 514–523.
DOI: 10.4028/www.scientific.net/msf.1038.514
Google Scholar
[8]
K. V. Kalafat, N. A. Taran, V. P. Plavan, A. M. Redko, I. V. Efimova, L. M. Vakhitova, The effect of ammonium polyphosphate: melamine: pentaerythritol ratio on the efficiency of fire protection of reactive coatings, Vopr. Khimii i Khimicheskoi Tekhnologii. 6 (2020) 59–68.
DOI: 10.32434/0321-4095-2020-133-6-59-68
Google Scholar
[9]
T. Y. Eremina, D. A. Korolchenko, I. N Kuznetsova, Synergism of physical and chemical processes in intumescent fire-retardant paints. IOP Conference Series: Materials Science and Engineering. 960 (2020) 032037.
DOI: 10.1088/1757-899x/960/3/032037
Google Scholar
[10]
W. Zhan, Z. Xu, L. Chen, L. Li, Q. Kong, M. Chen, J. Jiang, Research progress of carbon-based materials in intumescent fire-retardant coatings: A review. European Polymer Journal. (2024) 113486.
DOI: 10.1016/j.eurpolymj.2024.113486
Google Scholar
[11]
Z. Zhou, Z. Zhang, J. Huang, Y. Wang, Water-based intumescent fire resistance coating containing organic-modified glass fiber for steel structure. Journal of Cleaner Production. 442 (2024) 140897.
DOI: 10.1016/j.jclepro.2024.140897
Google Scholar
[12]
P. A. Piloto, M. S. Khetata, A. B Ramos-Gavilán, Analysis of the critical temperature on load bearing LSF walls under fire. Engineering Structures. 270 (2022) 114858.
DOI: 10.1016/j.engstruct.2022.114858
Google Scholar
[13]
L. M. Osvaldová, W. Fatriasari. Testing of Materials for Fire Protection Needs (2023).
Google Scholar
[14]
J. Zhang, J. P. Li, X. L. Fernández-Blázquez, R. Wang, X. Zhang, D. Y. Wan, A facile technique to investigate the char strength and fire retardant performance towards intumescent epoxy nanocomposites containing different synergists. Polymer Degradation and Stability. 202 (2022) 110000.
DOI: 10.1016/j.polymdegradstab.2022.110000
Google Scholar
[15]
A. Lucherini, L. Giuliani, G. Jomaas, Experimental study of the performance of intumescent coatings exposed to standard and non-standard fire conditions. Fire Safety Journal. 95 (2018) 42–50.
DOI: 10.1016/j.firesaf.2017.10.004
Google Scholar
[16]
A. Lucherini, J. P. Hidalgo, J. L. Torero, C. Maluk, Influence of heating conditions and initial thickness on the effectiveness of thin intumescent coatings. Fire Safety Journal. 120 (2021) 103078.
DOI: 10.1016/j.firesaf.2020.103078
Google Scholar
[17]
M. Rashid, K. Chetehouna, A. Settar, J. Rousseau, C. Roudaut, L. Lemée, Z. Aboura, Kinetic analysis of the thermal degradation of an intumescent fire retardant coated green biocomposite. Thermochimica Acta. 711 (2022) 179211.
DOI: 10.1016/j.tca.2022.179211
Google Scholar
[18]
A. Lucherini, H.Y. Lam, M. Jimenez, F. Samyn, S. Bourbigot, C. Maluk, Fire testing of intumescent coatings: comparison between bench-scale furnace and radiant panels experimental methodologies. Fire Technology. 58 (2022) 1737–1766.
DOI: 10.1007/s10694-022-01216-3
Google Scholar
[19]
M. Morys, D. Häßler, S. Krüger, B. Schartel, S. Hothan, Beyond the standard time-temperature curve: Assessment of intumescent coatings under standard and deviant temperature curves, Fire safety journal. 112 (2020) 102951.
DOI: 10.1016/j.firesaf.2020.102951
Google Scholar
[20]
L. Yi, S. Feng, Z. Wang, Y. Ding, T. Chu, Y. Zhuang, A comprehensive model to predict the fire performance of intumescent fire-retardant coating on steel substrate. Journal of Building Engineering. 95 (2024) 110127.
DOI: 10.1016/j.jobe.2024.110127
Google Scholar
[21]
L. Vakhitova, K. Kalafat, R. Vakhitov, V. Drizhd, N. Taran, V. Bessarabov, Nano-clays as rheology modifiers in intumescent coatings for steel building structures. Chemical Engineering Journal Advances. 16 (2023) 100544.
DOI: 10.1016/j.ceja.2023.100544
Google Scholar
[22]
Y. Zeng, C. E. Weinell, K. Dam-Johansen, L. Ring, S. Kiil, Comparison of an industrial- and a laboratory-scale furnace for analysis of hydrocarbon intumescent coating performance. Journal of Fire Sciences. 38 (2020) 309–329.
DOI: 10.1177/0734904120902852
Google Scholar
[23]
M. R. D. Silveira, R. S. Peres, V. F., Moritz, C. A. Ferreira, Intumescent coatings based on tannins for fire protection. Materials Research. 22(2) (2019). e20180433.
DOI: 10.1590/1980-5373-mr-2018-0433
Google Scholar
[24]
O. Hryhorenko, Y. Zolkina, N. V. Saienko, Y. V. Popov, Investigation of the Effect of Fillers on the Properties of the Expanded Coke Layer of Epoxyamine Compositions. In Materials Science Forum. 1038 (2021) 539–546.
DOI: 10.4028/www.scientific.net/msf.1038.539
Google Scholar
[25]
O. Hryhorenko, Y. Zolkina, N. Saienko, Y. Popov, R. Bikov, Investigation of adhesive-strength characteristics of fire-retardant epoxy polymers modified with metal-containing additives. IOP Conference Series: Materials Science and Engineering. 907 (2020) 012060.
DOI: 10.1088/1757-899x/907/1/012060
Google Scholar
[26]
Y. Li, C. F. Cao, Z. Y. Chen, S. C Liu, J. Bae, L. C. Tang, Waterborne intumescent fire-retardant polymer composite coatings: a review. Polymers. 16 (2024) 2353.
DOI: 10.3390/polym16162353
Google Scholar
[27]
Y. H. Ng, A. Dasari, K. H. Tan, L. Qian, Intumescent fire-retardant acrylic coatings: Effects of additive loading ratio and scale of testing. Progress in Organic Coatings. 150 (2021) 105985.
DOI: 10.1016/j.porgcoat.2020.105985
Google Scholar