Structural and Phase Features of Functional Coatings Obtained by Multichamber Detonation Spraying

Article Preview

Abstract:

Increasing the operational reliability and durability of parts and mechanisms used to operate under conditions of intense wear, loads, high pressure and temperatures requires the protection of working surfaces with functional coatings. The E.O. Paton Institute of Electric Welding of the National Academy of Sciences of Ukraine has developed a technology and equipment for multichamber detonation spraying (MCDS) of these coatings. This paper summarizes the data of experimental studies of the structure of composite coatings of various systems (Ni–Cr–Fe–B–Si, Cr3C2–NiCr, WC–Co–Cr, ZrSiO4, and Al2O3) for different materials. Research has established the influence of technological modes of spraying on structural and phase changes in the coating materials obtained by detonation spraying. Under different processing modes, the materials change volume fraction of phase components, microhardness, (sub)grain structure parameters, size of dispersed phases, and nature and distribution of dislocation density. The peculiarity of the structure of coatings obtained by the MCDS method is the formation of a dispersed structure, the presence of a nanoscale substructure and nanoparticles of hardening phases with a size of 10–100 nm. The formation of a nanostructural state contributes to an increase in the strength, fracture toughness, and crack resistance of coatings obtained by the MCDS method.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1165)

Pages:

41-50

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Korzhyk, V. Khaskin, A. Grynyuk, O. Ganushchak, S. Peleshenko, O. Konoreva, O. Demianov, V. Shcheretskiy, N. Fialko, Comparing features in metallurgical interaction when applying different techniques of arc and plasma surfacing of steel wire on titanium, Eastern-European J. Enterp. Technol. 4/12 (112) (2021) 6-17.

DOI: 10.15587/1729-4061.2021.238634

Google Scholar

[2] N. Imbirovych, O. Povstyanoy, Investigation of corrosion resistance of porous permeable materials with protective coatings of the new generation, Tech. Sci. Technol. 3 (33) (2023) 30-39.

Google Scholar

[3] G.M. Grigorenko, L.I. Adeeva, A.Y. Tunik, V.N. Korzhik, Y.P. Titkov, A.A. Chaika, Structurization of coatings in the plasma arc spraying process using B4C+(Cr,Fe)7C3-cored wires, Powd. Metall. Met. Ceram. 58 (5-6) (2019) 312-322.

DOI: 10.1007/s11106-019-00080-1

Google Scholar

[4] N. Imbirovych, O. Povstyanoy, O. Zaleta, S. Shymchuk, О. Priadko, The influence of synthesis regimes on operational properties of oxide ceramic coatings on an aluminum alloy, in: V. Ivanov, J. Trojanowska, I. Pavlenko, J. Zajac, D. Perakovic (Eds.), Advances in Design, Simulation and Manufacturing IV, Springer, Cham, 2021, pp.536-545.

DOI: 10.1007/978-3-030-77719-7_53

Google Scholar

[5] O. Povstyanoy, N. Imbirovych, V. Posuvailo, O. Zabolotnyi, T. Artyukh, Investigation of the corrosion resistance of porous permeable materials with protective coatings, in: V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, I. Pavlenko (Eds.), Advanced Manufacturing Processes IV, Springer, Cham, 2023, pp.306-316.

DOI: 10.1007/978-3-031-16651-8_29

Google Scholar

[6] L. Chkhartishvili, N. Barbakadze, O. Tsagareishvili, K. Sarajishvili, T. Korkia, V. Gabunia, R. Chedia, Coating of carbon black (CB) and graphene oxides (GOs) with magnetite (Fe3O4), Int. J. Adv. Nano Comput. Anal. 3 (1) (2024) 6-19.

DOI: 10.61797/ijanca.v3i1.330

Google Scholar

[7] A.Z. Skorokhod, I.S. Sviridova, V.N. Korzhik, The effect of mechanical pretreatment of polyethylene terephthalate powder on the structural and mechanical properties of coatings made from it, Mech. Compos. Mater. 30 (4) (1994) 328-334.

DOI: 10.1007/bf00634755

Google Scholar

[8] G.M. Grigorenko, L.I. Adeeva, A.Y. Tunik, V.N. Korzhik, M.V. Karpets, Plasma arc coatings produced from powder-cored wires with steel sheaths, Powd. Metall. Met. Ceram. 59 (5-6) (2020) 318-329.

DOI: 10.1007/s11106-020-00165-2

Google Scholar

[9] P.D. Stukhlyak, K.M. Moroz, Influence of porosity in the epoxy matrix–polyvinyl alcohol–disperse filler system on the impact toughness, Mater. Sci. 46 (4) (2011) 455-463.

DOI: 10.1007/s11003-011-9312-x

Google Scholar

[10] Yu.S. Borysov, N.V. Vihilianska, I.A. Demianov, A.P. Murashov, O.P. Gryshchenko, Studies of coatings produced by high-velocity oxy-fuel spraying using cermet powder based on FeMoNiCrB amorphizing alloy, Paton Welding J. (2) (2022) 33-36.

DOI: 10.37434/tpwj2022.02.05

Google Scholar

[11] Yu.S. Borisov, V.E. Oliker, E.A. Astakhov, V.N. Korzhik, Yu.A. Kunitskii, Structure and properties of gas-thermal coatings of Fe–B–C and Fe–Ti–B–C alloys, Powd. Metall. Met. Ceram. 26 (4) (1987) 313-318.

DOI: 10.1007/bf01184439

Google Scholar

[12] G.M. Hryhorenko, L.I. Adeeva, A.Yu. Tunik, M.V. Karpets, V.N. Korzhyk, M.V. Kindrachuk, O.V. Tisov, Formation of microstructure of plasma-arc coatings obtained using powder wires with steel skin and B4C+(Cr,Fe)7С3+Al filler, Metalphys. Novel Technol. 42 (9) (2020) 1265-1282.

DOI: 10.15407/mfint.42.09.1265

Google Scholar

[13] L. Chkhartishvili, Sh. Makatsaria, N. Barbakadze, O. Tsagareishvili, Т. Batsikadze, Sh. Kekutia, V. Mikelashvili, K. Davitadze, T. Minashvili, M. Japaridze, M. Stephanishvili, R. Chedia, Synthesis of 2D-material (G, GO, rGO, h-BN) – magnetic (Fe, Fe3O4) nanocomposites, Nano Hybr. Compos. 43 (10) (2024) 23-37.

DOI: 10.4028/p-momlh1

Google Scholar

[14] O. Totosko, P. Stukhlyak, M. Mytnyk, N. Dolgov, R. Zolotiy, D. Stukhlyak, Investigation of corrosion resistance of two-layer protective coatings, Chall. Natl. Defense Contemp. Geopolit. Situat. 2022 (1) (2022) 50-54.

DOI: 10.47459/cndcgs.2022.6

Google Scholar

[15] N. Fialko, R. Dinzhos, J. Sherenkovskii, N. Meranova, R. Navrodska, D. Izvorska, V. Korzhyk, M. Lazarenko, N. Koseva, Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties, Eastern-European J. Enterp. Technol. 4/5 (112) (2021) 21-26.

DOI: 10.15587/1729-4061.2021.236915

Google Scholar

[16] O. Berdnikova, O. Kushnarova, A. Bernatskyi, Y. Polovetskyi, V. Kostin, M. Khokhlov, Structure features of surface layers in structural steel after laser-plasma alloying with 48 (WC–W2C)+48Cr+4Al powder, in: 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties, IEEE, Odessa, 2021, DOI 10.1109/NAP51885.2021.9568516 (1-4).

DOI: 10.1109/nap51885.2021.9568516

Google Scholar

[17] V. Shelyagin, I. Krivtsun, Yu. Borisov, V. Khaskin, T. Nabok, A. Siora, A. Bernatskyi, S. Voinarovych, O. Kyslytsia, T. Nedej, Laser-arc and laser-plasma welding and coating technologies, Paton Welding J. (8) (2005) 44-49.

DOI: 10.4028/www.scientific.net/msf.927.64

Google Scholar

[18] N.V. Vigilianska, T.V. Tsymbalista, A.I. Kildii, C.V. Iantsevitch, Z.G. Ipatova, M.A. Vasylkivska, Detonation coatings produced by spraying of alloyed powders based on Fe–Al intermetallics, Automatic Welding (2) (2024) 26-30.

DOI: 10.37434/tpwj2024.04.03

Google Scholar

[19] I.K. Kuzmych–Ianchuk, Yu.S. Borisov, A.V. Bernatskyy, Laser-microplasma reactive powder spraying of titanium coatings with nitride phases, Appl. Mech. Mater. 682 (2014) 276-281.

DOI: 10.4028/www.scientific.net/amm.682.276

Google Scholar

[20] N. Imbirovych, I. Boyarska, O. Povstyanoy, K. Kurzydlowski, S. Homon, L. Kulakovskyi, Modification of oxide coatings synthesized on zirconium alloy by the method of plasma electrolytic oxidation, AIP Conf. Proc. 2949 (2023) 020011 (1-10).

DOI: 10.1063/5.0165655

Google Scholar

[21] B. Chen, M. Xu, Preparation and performance analysis of micro-nano composite coatings reinforced with WC particles, Mater. Res. Express 11 (2) (2024) 026508 (1-8).

DOI: 10.1088/2053-1591/ad2888

Google Scholar

[22] H. Zhang, H. Liu, Ch. Ren, Zh. Li, S. Hou, Microstructure and properties of the stellite6/WC composite coatings prepared by laser cladding, Lasers Manuf. Mater. Process. 10 (4) (2023) 645–658.

DOI: 10.1007/s40516-023-00228-3

Google Scholar

[23] V.G. Prokopov, N.M. Fialko, G.P. Sherenkovskaya, V.L. Yurchuk, Yu.S. Borisov, A.P. Murashov, V.N. Korzhik, Effect of coating porosity on the process of heat transfer with gas-thermal deposition, Powd. Metall. Met. Ceram. 32 (2) (1993) 118-121.

DOI: 10.1007/bf00560034

Google Scholar

[24] V.N. Korzhik, Theoretical analysis of the conditions required for rendering metallic alloys amorphous during gas-thermal spraying. III. Transformations in the amorphous layer during the growth process of the coating, Powd. Metall. Met. Ceram. 31 (11) (1992) 943-948.

DOI: 10.1007/bf00797621

Google Scholar

[25] L. Markashova, Y. Tyurin, O. Berdnikova, O. Kolisnichenko, I. Polovetskyi, Ye. Titkov, Effect of nano-structured factors on the properties of the coatings produced by detonation spraying method, in: A.D. Pogrebnjak, V. Novosad (Eds.), Advances in Thin Films, Nanostructured Materials, and Coatings, Springer Nature, Singapore, 2019, pp.109-117.

DOI: 10.1007/978-981-13-6133-3_11

Google Scholar

[26] O.V. Kolisnichenko, Yu.N. Tyurin, R. Tovbin, Efficiency of process of coating spraying using multichamber detonation unit, Paton Welding J. (10) (2017) 18-23.

DOI: 10.15407/tpwj2017.10.03

Google Scholar

[27] O.M. Berdnikova, Yu.M. Tyurin, O.V. Kolisnichenko, O.S. Kushnarova, Y.V. Polovetskyi, E.P. Titkov, L.Т. Yerеmyеyevа, Nanoscale structures of detonation-sprayed metal–ceramic coatings of the Ni–Cr–Fe–B–Si system, Nanosyst. Nanomater. Nanotehnol. 20 (1) (2022) 97-109.

DOI: 10.15407/nnn.20.01.097

Google Scholar

[28] O. Berdnikova, V. Sydorets, T. Alekseienko, Structure and properties of laser-welded joints from high-strength steels, Appl. Mech. Mater. 682 (2014) 240-245.

DOI: 10.4028/www.scientific.net/amm.682.240

Google Scholar

[29] O. Berdnikova, O. Kushnarova, A. Bernatskyi, T. Alekseienko, Y. Polovetskiyi, M. Khoklov, Structure peculiarities of the surface layers of structural steel under laser alloying, in: 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties, IEEE, Sumy, 2020, DOI 10.1109/nap51477.2020.9309615 (1-4).

DOI: 10.1109/nap51477.2020.9309615

Google Scholar